Pedosphere 28(1): 114--123, 2018
ISSN 1002-0160/CN 32-1315/P
©2018 Soil Science Society of China
Published by Elsevier B.V. and Science Press
Belowground Tritrophic Food Chain Modulates Soil Respiration in Grasslands
Andrey S. ZAITSEV1, Klaus BIRKHOFER2, Klemens EKSCHMITT1, Volkmar WOLTERS1
1Institute of Animal Ecology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26, 35392 Giessen (Germany)
2Department of Ecology, Brandenburg University of Technology Cottbus-Senftenberg, Konrad-Wachsmann-Allee 6, 03046 Cottbus (Germany)
Corresponding Author:Andrey S. ZAITSEV
      Edaphic biota significantly affects several essential ecological functions such as C-storage, nutrient turnover, and productivity. However, it is not completely understood how belowground animal contribution to these functions changes in grasslands subject to different land use types. A microcosm experiment was carried out to test the effect of a tritrophic food chain on CO2 release from grassland soils. Soil was collected from three differently managed grassland systems (meadow, pasture, and mown pasture) located in three distinct German regions that cover a north-south gradient of approximately 500 km. The tritrophic food chain comprised natural edaphic microflora, nematodes, and predatory gamasid mites. The experimental design involved a full factorial combination of the presence and absence of nematodes and gamasid mites. Nematodes significantly increased the CO2 emissions in most treatments, but the extent of this effect varied with land use type. The fact that grazing by nematodes stimulated the metabolic activity of the edaphic microflora over a wide range of grassland soils highlighted the critical impact of the microfauna on ecosystem services associated with soil organic matter dynamics. Gamasids slightly amplified the effect of nematodes on microbial metabolic activity, but only in the pastures. This effect was most probably due to the control of nematode abundance. The fact that gamasid addition also augmented the impact of environmental conditions on nematode-induced modulation of soil respiration highlighted the need for including land use differences while evaluating soil fauna contribution to soil processes. To conclude, the differential response of the investigated tritrophic food chain to different grassland management systems suggests that adverse effects of land use intensification on important soil processes such as atmospheric C-release could potentially be reduced by using management methods that preserve essential features of the belowground food web.
Key Words:  CO2 emission,land use,microcosm,nematodes,predatory mites,soil fauna,soil food webs
Citation: Zaitsev A S, Birkhofer K, Ekschmitt K, Wolters V. 2018. Belowground tritrophic food chain modulates soil respiration in grasslands. Pedosphere. 28(1):114-123.
View Full Text

Copyright © 2019 Editorial Committee of PEDOSPHERE. All rights reserved.
Address: P. O. Box 821, 71 East Beijing Road, Nanjing 210008, China    E-mail:
Technical support: Beijing E-Tiller Co.,Ltd.