Pedosphere 25(5): 686--695, 2015
ISSN 1002-0160/CN 32-1315/P
©2015 Soil Science Society of China
Published by Elsevier B.V. and Science Press
Influences of biochar and biochar-mineral complex on mycorrhizal colonisation and nutrition of wheat and sorghum
P. BLACKWELL1, S. JOSEPH2,3,4, P. MUNROE2, H. M. ANAWAR5, P. STORER6, R. J. GILKES5 and Z. M. SOLAIMAN7
1Department of Agriculture and Food Western Australia, Geraldton Regional Office, Geraldton, WA 6530 (Australia)
2School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)
3Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308 (Australia)
4University of Wollongong, Wollongong, NSW 2522 (Australia)
5School of Earth and Environment and UWA Institute of Agriculture, The University of Western Australia, Crawley, WA 6009 (Australia)
6Australian Mineral Fertilisers Pty Ltd., Tenterden, WA 6322 (Australia) {7}Soil Biology and Molecular Ecology Group, School of Earth and Environment and UWA Institute of Agriculture, The University of Western Australia, Crawley, WA 6009 (Australia)
ABSTRACT
      The high price of synthetic fertilisers and the price barrier for biochar as a soil amendment have encouraged the exploration of using biochar in fertiliser replacement formulations. Biochars coupled with fertilisers can be applied at lower application rates to achieve benefits in plant growth and nutrition, as well as soil biological fertility. It is necessary to evaluate the use of biochar as a fertiliser substitute. Therefore, this study investigated the comparative influences of biochars, including Acacia saligna (AS), Simcoa jarrah (SJ) and Wundowie jarrah (WJ), mineral fertiliser with microbes (MF + M), biochar-mineral complex (BMC) and their combination on mycorrhizal colonisation, growth and nutrition of wheat in a glasshouse experiment and sorghum in field conditions. BMC + MF + M treatment produced higher mycorrhizal colonisation than MF + M alone, indicating that BMC had a significant role in increasing mycorrhizal colonisation. SJ (treated with acetic acid) and MF + M treatments, as well as AS + MF + M application, showed similar effects on mycorrhizal colonisation, but lower colonisation than the BMC + MF + M treatment. Overall, the BMC + MF + M treatment supported the maximum shoot, root and total plant dry weight followed by AS + MF + M and WJ + MF + M. The MF + M treatment had the maximum shoot N and K concentrations, while BMC + MF + M application had the maximum shoot P concentration. AS + MF + M and WJ + MF + M treatments supported the maximum N uptake by wheat shoots, while BMC + MF + M supported the maximum P uptake. The results showed that biochars and BMCs could increase mycorrhizal colonisation, plant growth and nutrient uptake of wheat, particularly N, P, K, S and Zn. The field experiment confirmed that BMC application at a rate of 300 kg ha-1 could increase the yield of irrigated sorghum on a loam soil and provide better applied P use efficiency compared to a water-soluble fertiliser alone. These results indicated that biochar-based fertilisers might increase the resilience and sustainability of dryland cropping in environments such as in Western Australia and warrant further field evaluation.
Key Words:  carbon sequestration, nutrient uptake, P use efficiency, soil biological fertility, wheat production
Citation: Blackwell, P., Joseph, S., Munroe, P., Anawar, H. M., Storer, P., Gilkes, R. J. and Solaiman, Z. M. 2015. Influences of biochar and biochar-mineral complex on mycorrhizal colonisation and nutrition of wheat and sorghum. Pedosphere. 25(5): 686-695.
View Full Text



Copyright © 2024 Editorial Committee of PEDOSPHERE. All rights reserved.
Address: P. O. Box 821, 71 East Beijing Road, Nanjing 210008, China    E-mail: pedosphere@issas.ac.cn
Technical support: Beijing E-Tiller Co.,Ltd.