Pedosphere 21(3): 319--327, 2011
ISSN 1002-0160/CN 32-1315/P
©2011 Soil Science Society of China
Published by Elsevier B.V. and Science Press
Growth, cadmium accumulation and physiology of marigold (Tagetes erecta L.) as affected by arbuscular mycorrhizal fungi
LIU Ling-Zhi1,2, GONG Zong-Qiang2, ZHANG Yu-Long1 and LI Pei-Jun2
1 Shenyang Agricultural University, Shenyang 110866 (China)
2 Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China)
ABSTRACT
      A pot experiment was carried out to study the effects of three arbuscular mycorrhizal fungi (AMF), including Glomus intraradices, Glomus constrictum and Glomus mosseae, on the growth, root colonization and Cd accumulation of marigold (Tagetes erecta L.) at Cd addition levels of 0, 5 and 50 mg kg-1 in soil. The physiological characteristics, such as chlorophyll content, soluble sugar content, soluble protein content and antioxidant enzyme activity, of Tagetes erecta L. were also investigated. Generally, the symbiotic relationship between the marigold plant and arbuscular mycorrhizal fungi was well established under Cd stress. The symbiotic relationship was reflected by the better physiobiochemical parameters of the marigold plants inoculated with the three AMF isolates where the colonization rates in the roots were between 34.3% and 88.8%. Compared with the non-inoculated marigold plants, the shoot and root biomass of the inoculated marigold plants increased by 15.2%--47.5% and 47.8%--130.1%, respectively, and the Cd concentration and accumulation decreased. The chlorophyll and soluble sugar contents in the mycorrhizal marigold plants increased with Cd addition, indicating that AMF inoculation helped the marigold plants to grow by resisting Cd stress. The antioxidant enzymes reacted differently with the three AMF under Cd stress. For plants inoculated with G. constrictum and G. mosseae, the activities of superoxide dismutase (SOD) and catalase (CAT) increased with increasing Cd addition, but peroxidase (POD) activity decreased with increasing Cd addition. For plants inoculated with G. intraradices, three of the antioxidant enzyme activities were significantly decreased at high levels of Cd addition. Overall, the activities of the three antioxidant enzymes in the plants inoculated with AMF were higher than those of the plants without AMF inoculation under Cd stress. Our results support the view that antioxidant enzymes have a great influence on the biomass of plants, and AMF can improve the capability of reactive oxygen species (ROS) scavenging and reduce Cd concentration in plants to alleviate Tagetes erecta L. from Cd stress.
Key Words:  antioxidant enzyme, Cd stress, metal accumulation, phytoremediation, root colonization
Citation: Liu, L. Z., Gong, Z. Q., Zhang, Y. L. and Li, P. J. 2011. Growth, cadmium accumulation and physiology of marigold (Tagetes erecta L.) as affected by arbuscular mycorrhizal fungi. Pedosphere. 21(3): 319-327.
View Full Text



Copyright © 2024 Editorial Committee of PEDOSPHERE. All rights reserved.
Address: P. O. Box 821, 71 East Beijing Road, Nanjing 210008, China    E-mail: pedosphere@issas.ac.cn
Technical support: Beijing E-Tiller Co.,Ltd.