Pedosphere 20(2): 185--197, 2010
ISSN 1002-0160/CN 32-1315/P
©2010 Soil Science Society of China
Published by Elsevier B.V. and Science Press
Spatial variability of soil properties at Capulin Volcano, New Mexico, USA: Implications for sampling strategy
School of Soil, Plant and Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803 (USA)
      Non-agricultural lands are surveyed sparsely in general. Meanwhile, soils in these areas usually exhibit strong spatial variability which requires more samples for producing acceptable estimates. Capulin Volcano National Monument, as a typical sparsely-surveyed area, was chosen to assess spatial variability of a variety of soil properties, and furthermore, to investigate its implications for sampling design. One hundred and forty one composited soil samples were collected across the Monument and the surrounding areas. Soil properties including pH, organic matter content, extractable elements such as calcium (Ca), magnesium (Mg), potassium (K), sodium (Na), phosphorus (P), sulfur (S), zinc (Zn), and copper (Cu), as well as sand, silt, and clay percentages were analyzed for each sample. Semivariograms of all properties were constructed, standardized, and compared to estimate the spatial variability of the soil properties in the area. Based on the similarity among standardized semivariograms, we found that the semivariograms could be generalized for physical and chemical properties, respectively. The generalized semivariogram for physical properties had a much greater sill value (2.635) and effective range (7 500 m) than that for chemical properties. Optimal sampling density (OSD), which is derived from the generalized semivariogram and defines the relationship between sampling density and expected error percentage, was proposed to represent, interpret, and compare soil spatial variability and to provide guidance for sample scheme design. OSDs showed that chemical properties exhibit a stronger local spatial variability than soil texture parameters, implying more samples or analysis are required to achieve a similar level of precision.
Key Words:  generalized semivariogram, GIS, optimal sampling density, sampling design
Citation: Weindorf, D. C. and Zhu, Y. 2010. Spatial variability of soil properties at Capulin Volcano, New Mexico, USA: Implications for sampling strategy. Pedosphere. 20(2): 185-197.
View Full Text

Copyright © 2024 Editorial Committee of PEDOSPHERE. All rights reserved.
Address: No.298 Chuangyou Road, Jiangning District, Nanjing 210008, China PostCode:211135    E-mail:
Technical support: Beijing E-Tiller Co.,Ltd.