Knowledge Network Node

Dissolution of Aluminum in Variably Charged Soils as Affected by Low-Molecular-Weight Organic AcidsEnglish Full Text

LI Jiu-Yu1,2, XU Ren-Kou1*2 and JI Guo-Liang1 1 Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China). 2 Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China)

Abstract: Low-molecular-weight (LMW) organic acids exist widely in soils and play an important role in soil processes such as mineral weathering, nutrient mobilization and Al detoxification. In this research, a batch experiment was conducted to examine the effects of LMW organic acids on dissolution of aluminum in two variably charged soils, an Ultisol and an Oxisol. The results showed that the LMW organic acids enhanced the dissolution of Al in the two investigated soils in the following order: citric > oxalic > malonic > malic > tartaric > salicylic > lactic > maleic. This was generally in agreement with the magnitude of the stability constants for the Al-organic complexes. The effects of LMW organic acids on Al dissolution were greater in the Ultisol than in the Oxisol as compared to their controls. Also, the accelerating effects of citric and oxalic acids on dissolution of Al increased with an increase in pH, while the effects of lactic and salicylic acids decreased. Additionally, when the organic acid concentration was less than 0.2 mmol L-1, the dissolution of Al changed little with increase in acid concentration. However, when the organic acid concentration was greater than 0.2 mmol L-1, the dissolution of Al increased with increase in acid concentration. In addition to the acid first dissociation constant and stability constant of Al-organic complexes, the promoting effects of LMW organic acids on dissolution of Al were also related to their sorption-desorption equilibrium in the soils.
  • Series:

    (B) Chemistry/ Metallurgy/ Environment/ Mine Industry; (D) Agriculture

  • Subject:

    Environment Science and Resources Utilization

  • Classification Code:

    X53

  • Mobile Reading
    Read on your phone instantly
    Step 1

    Scan QR Codes

    "Mobile CNKI-CNKI Express" App

    Step 2

    Open“CNKI Express”

    and click the scan icon in the upper left corner of the homepage.

    Step 3

    Scan QR Codes

    Read this article on your phone.

  • HTML
  • CAJ Download
  • PDF Download

Download the mobile appuse the app to scan this coderead the article.

Tips: Please download CAJViewer to view CAJ format full text.

Download: 93 Page: 484-490 Pagecount: 7 Size: 189K

Related Literature
  • Similar Article
  • Reader Recommendation
  • Associated Author