Knowledge Network Node

Plateau Marsh Methane Oxidation as affected by Inorganic NEnglish Full Text

WANG Zhi-Ping, DUAN Yi, YANG Ju-Rong, LI Ling-Hao and HAN Xing-Guo Laboratory of Quantitative Vegetation Ecology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093 (China). E-mail: wangzp5@yahoo.com State Key Laboratory of Gas Geochemistry, Lanzhou Institute of Geology, Chinese Academy of Sciences, Lanzhou 730000 (China) College of Resource and Environment, Beijing Normal University, Beijing 100875 (China)

Abstract: In a series of laboratory incubations using soils of two contrasting sites from a temperate marsh on the Qinghai-Tibet Plateau, potential methane (CH4) oxidation rates were measured to study the effects of inorganic N inputs on CH4 oxidation. For a drained site, subsurface peat (5-15 cm) at an initial 20 μL CH4 L-1 showed a significantly different (P < 0.05) CH4 oxidation rate compared to other soil depths, with a maximal rate of 20.9 ng CH4 gDW (dry weight)-1 h-1; the underlying mineral soil layers (15-30 and 30-50 cm) also had a strong CH4 oxidation capacity at about an initial 2000 μL CH4 L-1. With a waterlogged site, the CH4 oxidation rate in an aerobic incubation was significantly greater (P < 0.05) in the surface soil layer (0-5 cm) compared to the 15-30 and 30-50 cm depths. There was generally no or a very weak effect from addition of NO3- on CH4 oxidation. In marked contrast, NH4+ salts, such as (NH4)2SO4, NH4Cl and NH4NO3, exhibited strong inhibitions, which varied as a function of the added salts and the initial CH4 level. Increasing NH4+ usually resulted in greater inhibition and increasing initial CH4 concentrations resulted in less. NH4+ inhibition on CH4 oxidatio in natural high-altitude, low-latitude wetlands could be as important as has been reported for agricultural and forest soils. The NH4+ effects on the CH4 oxidation rate need to be further investigated in a wide range of natural wetland soil types.
  • Series:

    (D) Agriculture

  • Subject:

    Fundamental Science of Agriculture; Agronomy

  • Classification Code:

    S153

  • Mobile Reading
    Read on your phone instantly
    Step 1

    Scan QR Codes

    "Mobile CNKI-CNKI Express" App

    Step 2

    Open“CNKI Express”

    and click the scan icon in the upper left corner of the homepage.

    Step 3

    Scan QR Codes

    Read this article on your phone.

  • HTML
  • CAJ Download
  • PDF Download

Download the mobile appuse the app to scan this coderead the article.

Tips: Please download CAJViewer to view CAJ format full text.

Download: 48 Page: 195-204 Pagecount: 10 Size: 482k

Related Literature
  • Similar Article
  • Reader Recommendation
  • Associated Author