Knowledge Network Node

Tomato Leaf Photosynthetic Responses to Humidity andTemperature Under Salinity and Water DeficitEnglish Full Text

H. L. XU;;R. WANG;; L. GAUTHIER and A. GOSSELIN (International Nature Farming Research Center,Hata,Nagano 390-1401 (Japan) Horticulture Research Center,Laval University,Ste-Foy,Quebec G1K 7P4 (Canada))

Abstract: Greenhouse tomato plants (Lycopersicon esculentum Mill cv. Capello) were grown on peat-based substrate and treated with high (4.5 mS cm-1) and low (2.3 mS cm-1) nutrient solution electric conductivity(EC) under high and low substrate water contents. FOur weeks after the beginning of the treatments, photosynthesis (Th) was measured under different humidity and temperatures to examine the interactive effectswith rhizosphere salinity and water deficit. A rectangular hyperbolic model fitted the light-photosynthesiscurve. Photosynthetic capacity (PC) was decreased but quantum yield (YQ) was increased by rhizospheresalinity caused by high EC. PN was decreased by low humidity only in high EC- and/or water-stressed plants.Under high photosynthetic photon flux (PPF), low humidity induced PC decline in water-stressed plants andPN oscillation in high-EC-treated plants. PN increased steadily as the leaf temperature changed from 18 Cto 23 and then decreased steadily from 23 to 38 . At 34 , PN decreased significantly in waterstressed plants. Dark respiration (RD) increased in an exponential manner as the leaf temperature changedfrom 18 to 38 to an extent about ten times higher under 38 than under 18 . Our data suggestedthat PN decrease under high temperature was attributed, st least in part, to the increased RD. RD in highEC- and/or water-stressed plants was higher than that in the plants of control under lower temperature butlower than that in the plants of control under high temperature. The analysis of stomatal and mesophyllconductance showed that low humidity effect was mainly through stomatal response while temperature effectwas mainly through biochemical functions. The result showed that environmental stresses affected PN in anadditive or synergistic manner.
  • Series:

    (D) Agriculture

  • Subject:

    Fundamental Science of Agriculture; Agronomy

  • Classification Code:

    S152.7

  • Mobile Reading
    Read on your phone instantly
    Step 1

    Scan QR Codes

    "Mobile CNKI-CNKI Express" App

    Step 2

    Open“CNKI Express”

    and click the scan icon in the upper left corner of the homepage.

    Step 3

    Scan QR Codes

    Read this article on your phone.

  • CAJ Download
  • PDF Download

Download the mobile appuse the app to scan this coderead the article.

Tips: Please download CAJViewer to view CAJ format full text.

Download: 30 Pagecount: 8 Size: 295k

Related Literature
  • Similar Article
  • Reader Recommendation
  • Associated Author