Pedosphere 34(2): 473--483, 2024
ISSN 1002-0160/CN 32-1315/P
©2024 Soil Science Society of China
Published by Elsevier B.V. and Science Press
Ectomycorrhizal fungi and dark septate endophyte inoculation improve growth and tolerance of Pinus tabulaeformis under cadmium stress
Yong ZHOU, Yanyan ZHENG, Pengwei LI, Lingjie, XU Qiang FU
College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding 071000 (China)
ABSTRACT
      Forest trees can establish symbiotic associations with dark septate endophytes (DSEs) and ectomycorrhizal fungi (ECMF) simultaneously. However, the combined effects of these two fungi on the growth and cadmium (Cd) tolerance of host plants remain largely unexplored. To address this knowledge gap, a pot experiment was conducted to examine the effects of the interaction between an ECMF strain (Suillus granulatus) and a DSE strain (Pseudopyrenochaeta sp.) on Pinus tabulaeformis under Cd stress, by assessing plant growth and physiological parameters, nutrient uptake, and soil properties. Notably, the colonization rates of both fungal strains were found to increase in response to Cd stress, with the extent of this increase being influenced by the specific fungal species and the Cd level in the soil. Compared to the non-inoculation treatment, single inoculation with fungal strain resulted in enhanced biomass, root development, and nutrient contents in P. tabulaeformis seedlings under Cd stress. Furthermore, a synergistic effect was observed when these seedlings were co-inoculated with S. granulatus and Pseudopyrenochaeta sp., as indicated by significantly greater measurements in various indicators compared to both the single and non-inoculation treatments. Fungal inoculation effectively regulated the antioxidant defense responses and photosynthesis of P. tabulaeformis seedlings subjected to Cd stress, particularly in the co-inoculation treatment. In addition, fungal inoculation facilitated the Cd accumulation in P. tabulaeformis, suggesting a promising potential for the implementation of bioremediation strategies in the areas contaminated with heavy metals. The findings from this study indicate that the utilization of root symbiotic fungi obtained from stress environments could potentially enhance the growth performance and tolerance of P. tabulaeformis towards heavy metals, and co-inoculation of both fungal groups may result in even more pronounced synergistic effects on the overall fitness of the plant.
Key Words:  antioxidant defense response,colonization rate,fungal inoculation,heavy metal tolerance,physiological parameter,root symbiotic fungi,soil property
Citation: Zhou Y, Zheng Y Y, Li P W, Xu L J, Fu Q. 2024. Ectomycorrhizal fungi and dark septate endophyte inoculation improve growth and tolerance of Pinus tabulaeformis under cadmium stress. Pedosphere. 34(2): 473-483.
View Full Text



版权所有 © 2024 《PEDOSPHERE》(土壤圈)编委会
地址:南京市北京东路71号 中科院南京土壤研究所 邮编:210008    E-mail:pedosphere@issas.ac.cn
技术支持:北京勤云科技发展有限公司  京ICP备09084417号