Pedosphere 33(5): 731--743, 2023
ISSN 1002-0160/CN 32-1315/P
©2023 Soil Science Society of China
Published by Elsevier B.V. and Science Press
Hand-feel soil texture observations to evaluate the accuracy of digital soil maps for local prediction of soil particle size distribution: A case study in Central France
Anne C. RICHER-de-FORGES1, Dominique ARROUAYS1, Laura POGGIO2, Songchao CHEN3, Marine LACOSTE1, Budiman MINASNY4,5, Zamir LIBOHOVA6, Pierre ROUDIER7, Vera L. MULDER8, Hervé NÉDÉLEC9, Guillaume MARTELET10, Blandine LEMERCIER11, Philippe LAGACHERIE12, Hocine BOURENNANE1
1 INRAE(Institut national de recherche pour l'agriculture, l'alimentation et l'environnement), Info & Sols Unit, Orléans 45075(France);
2 ISRIC(International Soil Reference and Information Centre) Wageningen, P. O. Box 353, Wageningen 6700(The Netherlands);
3 Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200(China);
4 The University of Sydney, Sydney Institute of Agriculture. Eveleigh NSW 2015(Australia);
5 The University of Sydney, School of Life and Environmental Sciences, Eveleigh NSW 2015(Australia);
6 USDA-ARS(United States Department of Agriculture-Agricultural Research Service), Dale Bumpers Small Farms Research Center, 6883 S. State Hwy. 23, Booneville AR 72927(USA);
7 Landcare Research-Manaaki Whenua, Palmerston North 4442(New Zealand);
8 Soil Geography and Landscape Group, Wageningen University, P. O. Box 47, Wageningen 6700(The Netherlands);
9 Chambre d'Agriculture du Loiret, Orléans F-45000(France);
10 Bureau de Recherches Géologiques et Minières, BP 36009, Orléans cedex 2, Orléans 45060(France);
11 UMR SAS(Unité Mixte de Recherche "Sol Agro et hydrosystème Spatialisation") Institut Agro, INRAE, Rennes F-35000(France);
12 UMR LISAH(Unité Mixte de Recherche "Laboratoire d'Etude des Interactions entre Sol-Agrosystème-Hydrosystème"), INRAE, Institut Agro, IRD(Institut de Recherche pour le Développement), Montpellier F-34000(France)
Corresponding Author:Anne C. RICHER-de-FORGES
      Digital maps of soil properties are now widely available. End-users now can access several digital soil mapping (DSM) products of soil properties, produced using different models, calibration/training data, and covariates at various spatial scales from global to local. Therefore, there is an urgent need to provide easy-to-understand tools to communicate map uncertainty and help end-users assess the reliability of DSM products for use at local scales. In this study, we used a large amount of hand-feel soil texture (HFST) data to assess the performance of various published DSM products on the prediction of soil particle size distribution in Central France. We tested four DSM products for soil texture prediction developed at various scales (global, continental, national, and regional) by comparing their predictions with approximately 3 200 HFST observations realized on a 1:50 000 soil survey conducted after release of these DSM products. We used both visual comparisons and quantitative indicators to match the DSM predictions and HFST observations. The comparison between the low-cost HFST observations and DSM predictions clearly showed the applicability of various DSM products, with the prediction accuracy increasing from global to regional predictions. This simple evaluation can determine which products can be used at the local scale and if more accurate DSM products are required.
Key Words:  digital soil mapping products,easy-to-understand tool,hand-feel observation,local use,map uncertainty,prediction performance,spatial extent,visual assessment
Citation: Richer-de-Forges A C, Arrouays D, Poggio L, Chen S C, Lacoste M, Minasny B, Libohova Z, Roudier P, Mulder V L, Nédélec H, Martelet G, Lemercier B, Lagacherie P, Bourennane H. 2023. Hand-feel soil texture observations to evaluate the accuracy of digital soil maps for local prediction of soil particle size distribution: A case study in Central France. Pedosphere. 33(5): 731-743.
View Full Text

版权所有 © 2024 《PEDOSPHERE》(土壤圈)编委会
地址:南京市北京东路71号 中科院南京土壤研究所 邮编:210008
技术支持:北京勤云科技发展有限公司  京ICP备09084417号