Pedosphere 32(5): 707--717, 2022
ISSN 1002-0160/CN 32-1315/P
©2022 Soil Science Society of China
Published by Elsevier B.V. and Science Press
Elevated atmospheric CO2 reduces CH4 and N2O emissions under two contrasting rice cultivars from a subtropical paddy field in China |
Haiyang YU1,2, Guangbin ZHANG1, Jing MA1, Tianyu WANG1,2, Kaifu SONG1,2, Qiong HUANG1,2, Chunwu ZHU1, Qian JIANG1, Jianguo ZHU1, Hua XU1 |
1State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); 2University of Chinese Academy of Sciences, Beijing 100049 (China) |
ABSTRACT |
Elevated CO2 (eCO2) and rice cultivars can strongly alter CH4 and N2O emissions from paddy fields. However, detailed information on how their interaction affects greenhouse gas fluxes in the field is still lacking. In this study, we investigated CH4 and N2O emissions and rice growth under two contrasting rice cultivars (the strongly and weakly responsive cultivars) in response to eCO2, 200 μmol mol-1 higher than the ambient CO2 (aCO2), in Chinese subtropical rice systems relying on a multi-year in-situ free-air CO2 enrichment platform from 2016 to 2018. The results showed that compared to aCO2, eCO2 increased rice yield by 7%-31%, while it decreased seasonal cumulative CH4 and N2O emissions by 11%-59% and 33%-70%, respectively, regardless of rice cultivar. The decrease in CH4 emissions under eCO2 was possibly ascribed to the lower CH4 production potential (MPP) and the higher CH4 oxidation potential (MOP) correlated with the higher soil redox potential (Eh) and O2 concentration ([O2]) in the surface soil. The mitigating effect of eCO2 on N2O emissions was likely associated with the reduction of soil soluble N content. The strongly responsive cultivars had lower CH4 and N2O emissions than the weakly responsive cultivars, and the main reason might be that the former induced higher soil Eh and[O2] in the surface soil and had larger plant biomass and greater N uptake. The findings indicated that breeding strongly responsive cultivars with the potential for greater rice production and lower greenhouse gas emissions is an effective agricultural practice to ensure food security and environmental sustainability under future climate change scenarios. |
Key Words: climate change,free-air CO2 enrichment,greenhouse gas emission,methane oxidation potential,methane production potential,soil oxygen,soil redox potential |
Citation: Yu H Y, Zhang G B, Ma J, Wang T Y, Song K F, Huang Q, Zhu C W, Jiang Q, Zhu J G, Xu H. 2022. Elevated atmospheric CO2 reduces CH4 and N2O emissions under two contrasting rice cultivars from a subtropical paddy field in China. Pedosphere. 32(5): 707-717. |
View Full Text
|
|
|
|