Pedosphere 30(3): 314--325, 2020
ISSN 1002-0160/CN 32-1315/P
©2020 Soil Science Society of China
Published by Elsevier B.V. and Science Press
Arabidopsis under ammonium over-supply: Characteristics of ammonium toxicity in relation to the activity of ammonium transporters
Yi LI1,2, Jinyan ZHOU1, Dongli HAO1, Shunying YANG1, Yanhua SU1
1State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China);
2University of Chinese Academy of Sciences, Beijing 100049 (China)
      Because of highly intensive farming practices, crop plants could suffer relatively long terms of ammonium (NH4+) excess stress introduced by overdose application of nitrogen fertilizers. However, the lack of sufficient understanding of plant responses to NH4+ excess stress impairs the detection of effective solutions to this problem. The present work examined the biological influences of over-supplied NH4+ in Arabidopsis thaliana using two mutant lines each with an ammonium transporter (AMT) gene (AtAMT1;1 or AtAMT1;3) knocked out. Our results indicated that lacking one of the major components of root NH4+ -absorbing systems significantly alleviated the toxicity effects on Arabidopsis plants by reducing the accumulation of free NH4+, suggesting that persistent absorption of NH4+ through AMT was the main cause of excessive accumulation of free NH4+ in the plants. Shading treatment led to a reduced transpirational driving force and thereby constrained the accumulation of toxic NH4+ in the plants, finally resulting in higher NH4+ -promoted growth in the wild type (WT). Under the shading treatment, the amt1;1 and amt1;3 mutant plants acquired insufficient NH4+ and showed reduced growth when compared with the WT. Furthermore, the foliar application of sucrose notably alleviated the inhibitory effects on plant growth in the WT but had no effect on either the amt1;1 or amt1;3 mutant plants, indicating that carbon scarcity associated with NH4+ excess is probably a major cause of NH4+ toxicity in plants. Accordingly, increasing carbon source could be a potentially effective approach that alleviates the inhibition caused by NH4+ excess and increases nitrogen use efficiency under NH4+ over-supply.
Key Words:  carbon and nitrogen synergy,nitrogen use efficiency,stress mechanism,sucrose foliar spray,toxicity alleviation,transporter knockout
Citation: Li Y, Zhou J Y, Hao D L, Yang S Y, Su Y H. 2020. Arabidopsis under ammonium over-supply: Characteristics of ammonium toxicity in relation to the activity of ammonium transporters. Pedosphere. 30(3): 314-325.
View Full Text

版权所有 © 2024 《PEDOSPHERE》(土壤圈)编委会
地址:南京市北京东路71号 中科院南京土壤研究所 邮编:210008
技术支持:北京勤云科技发展有限公司  京ICP备09084417号