Pedosphere 22(6): 776--784, 2012
ISSN 1002-0160/CN 32-1315/P
©2012 Soil Science Society of China
Published by Elsevier B.V. and Science Press
Contribution of root proliferation in nutrient-rich soil patches to nutrient uptake and growth of maize |
LI Hong-Bo, ZHANG Fu-Suo and SHEN Jian-Bo |
Department of Plant Nutrition, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193 (China) |
ABSTRACT |
Root proliferation can be stimulated in a heterogeneous nutrient patch; however, the functions of the root proliferation in the nutrient-rich soil patches are not fully understood. In the present study, a two-year field experiment was conducted to examine the comparative effects of localized application of ammonium and phosphorus (P) at early or late stages on root growth, nutrient uptake, and biomass of maize (Zea mays L.) on a calcareous soil in an intensive farming system. Localized supply of ammonium and P had a more evident effect on shoot and root growth, and especially stimulated fine root development at the early seedling stage, with most of the maize roots being allocated to the nutrient-rich patch in the topsoil. Although localized ammonium and P supply at the late stage also enhanced the fine root growth, the plant roots in the patch accounted for a low proportion of the whole maize roots in the topsoil at the flowering stage. Compared with the early stage, fine root length in the short-lived nutrient patch decreased by 44%-62% and the shoot dry weight was not different between heterogeneous and homogeneous nutrient supply at the late growth stage. Localized supply of ammonium and P significantly increased N and P accumulation by maize at 35 and 47 days after sowing (DAS); however, no significant difference was found among the treatments at 82 DAS and the later growth stages. The increased nutrient uptake and plant growth was related to the higher proportion of root length in the localized nutrient-enriched patch. The results indicated that root proliferation in nutrient patches contributed more to maize growth and nutrient uptake at the early than late stages. |
Key Words: biomass, growth stage, intensive farming system, localized nutrient supply, root length |
Citation: Li, H. B., Zhang, F. S. and Shen, J. B. 2012. Contribution of root proliferation in nutrient-rich soil patches to nutrient uptake and growth of maize. Pedosphere. 22(6): 776-784. |
View Full Text
|
|
|
|