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ABSTRACT 

Over the past decades, the demand for food continues to grow worldwide due to population growth and 
the reduction of arable land. Rice ratooning offers new opportunities for raising rice production with limited 
labor input, which has renewed the interest in ratoon rice cultivation. Timely monitoring of the spatial 
pattern of both traditional and ratoon rice cultivations at regional scales is becoming essential information 
needed for studies of agricultural resource management and food security. However, similar phenological 
characteristics lead to poor separability between traditional double rice and ratoon rice systems from satellite 
observations. In this research, we first proposed an improved phenology-based rice detection algorithm 
using Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index 
(NDVI) images. A new index was then developed for automatically delineating the ratoon rice paddy area 
with the aid of a readymade rice map in Hubei Province, China. The accuracy assessment using ground truth 
data showed that our approach could map both traditional and ratoon rice paddies with a high user accuracy 
(91.25% and 91.43%, respectively). Last, these MODIS retrieved rice areas were validated with annual 
agricultural statistic data, and R2-values of 0.60 and 0.41 were recorded for traditional and ratoon rice 
paddies, respectively. The total planting area of ratoon rice in 2016 was estimated to be 1283.6 km2 in Hubei 
Province, contributing 5.0% of the total rice paddy area. This work demonstrates the feasibility of extracting 
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the spatial extent of both traditional and ratoon rice solely from time-series NDVI and field survey data. It 
makes strides towards routine monitoring traditional and ratoon rice distribution at the subnational level in 
timely ways. Given the historical satellite and phenology records, the proposed algorithms may have the 
potential to promote rice paddy mapping efforts across a broad temporal extent (1980s-present). 

Key Words:  area estimation, cross-correlogram, spectral matching, MODIS, NDVI, ratoon rice 
index 

 
 
INTRODUCTION 

 
Rice, the major staple for more than half of the global population, is at the heart of food security, as 

global rice production must be increased by 40% by the end of 2030 to meet the growing demand (OCDE, 
2009). China is the leading rice producer in the world, accounting for 18.2% of the worldwide harvest area 
and 27.4% of the global production (FAOSTAT, http://www.fao.org/faostat/en/#data). Current self-
sufficiency in rice production has been accomplished by increasing rice yields >30% since 1980 
notwithstanding an 11% decrease in harvested rice area due to massive rural-to-urban demographic 
transition (Deng et al., 2019). In recent years, land-use changes coupled with fast socio-economic 
development have strongly impacted rice production across the globe, particularly in China, where the rate 
of rice yield growth slowed distinctly. China would have to make strategic decisions for ensuring food 
security for 1.4 billion domestic people and other rice-reliant populations as well (Peng, 2014). A pressing 
need is to enhance yield without increasing the land area and, at less production cost per unit. 

Rice ratooning offers an effective cultivation practice to achieve additional rice yields with minimal 
inputs (Harrell et al., 2009). The ratoon rice is a second rice crop growing from the stubble left after the 
main rice harvest (Dong et al., 2017). Global warming, to some extent, is considered to promote the 
cultivation of ratoon rice widely (Negalur et al., 2017; Ziska et al., 2018). Also, compared with the 
traditional rice systems (e.g., early rice, late rice, and middle rice), ratoon rice systems have the advantages 
of 50% lower production costs, 40% shorter growth duration, and higher water use efficiency (60% fewer 
water inputs) with 40–50% yield as that of main crop (Krishanamurthy, 1989; Santos et al., 2003; Munda 
et al., 2009). Therefore, shifting the traditional single rice system (just one main crop) into the ratoon rice 
system (main crop + ratoon crop) not only adapts to climate change but also represents a very large potential 
of increase in rice production.  

Ratoon rice agriculture is currently distributed across the middle-lower Yangtze River region and 
Southern part of China (e.g., Hubei, Hunan, Sichuan, and Fujian provinces), with a continuously increasing 
planting area since the year 2011 (Peng, 2014). It is preliminarily estimated that the area of ratoon rice 
cultivation was over 8000 km2 in 2018 (http://dy.163.com/v2/article/detail/EAJ4KJF0055004XG.html). But 
no nationwide statistical data on ratoon rice are publicly available in China yet. Furthermore, global 
warming may promote rice planting extending to the regions of 37 °N by the end of the 21st century (Ziska 
et al., 2018), thus possibly causing the area of ratoon rice tended to increase greatly in the future (Nelson et 
al., 2009). Therefore, timely monitoring of the area and cultivation practice in both traditional and ratoon 
rice systems is crucial for studying the effects of human activities and climate change on rice agriculture, as 
well as the influences of the area changes in rice paddy on the food security, economic development, 
biogeochemical cycles, and water resource management in China and worldwide (Matthews et al., 1991; 
Olivier et al., 1999; Leff et al., 2004; Yan et al., 2009; Li et al., 2016).  

Remote sensing technology, in combination with phenology data, has been widely used to acquire 
accurate spatial information for rice agriculture over large areas. Over the past few decades, the Moderate 
Resolution Imaging Spectrometer (MODIS) shows a good capability in providing daily and continuous data 
for land surface monitoring at different spatial scales, and a variety of MODIS-based algorithms have been 
designed for regional and continental mapping of rice paddies (Sakamoto et al., 2005; Wardlow and Egbert, 
2008; Lv and Liu, 2010; Wang and Lu, 2010; Chen et al., 2011; Gumma et al., 2011; Li et al., 2020). These 
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approaches basically take advantage of a unique physical feature of the rice paddy surface because it is a 
mixture of soil, water and rice leaves during the transplanting stage but would be fully covered by rice crop 
canopy during the heading stage of the growing season. However, to our knowledge, few studies have 
investigated the spatial distribution mapping of ratoon rice with remotely sensed data. Deriving the ratoon 
rice coverage is methodologically challenging, mainly due to the phenological variations of ratoon rice 
canopy are quite similar to the traditional double rice (Yuan et al., 2019). The difficulty of ratoon rice 
mapping arises largely from using either traditional statistics-based image classification techniques or 
phenology- and threshold-based segmentation algorithms.  

With these issues in mind, the primary aim of this study is twofold: (1) To develop an automated 
phenology-based rice detection approach for large-scale application; and (2) To develop a new index for 
automatically delineating ratoon rice paddy area with the aid of a readymade rice map of 2016 in Hubei 
Province, China. To achieve these goals, in the first step, we used high-quality time-series MODIS 
normalized difference vegetation index (NDVI) data and spatial datasets of rice growth calendar to form 
NDVI difference images between key rice growth stages pixel by pixel. We then took advantage of the auto-
thresholding method to recognize rice pixels from the NDVI difference images. Subsequently, we developed 
a new index based on the same time series NDVI dataset to automatically extract the ratoon rice area in 
Hubei Province. The proposed approaches (robust and automatic) can contribute to future efforts to update 
the annual geospatial database of rice cultivation and to support various studies of land-use and land-cover 
change, greenhouse gas estimations, and agricultural resource management. 

 
MATERIALS 

 
Study area 

 
We selected Hubei Province, China (lying between 29°05′ N to 33°20′ N and 108°21′ E to 116°07′E) 

as the study area, where rice ratooning is well exemplified as an alternative of double rice cropping based 
on the traditional single rice (Fig. 1). The subtropical monsoon climate usually brings abundant precipitation 
and a long warm season. Annual mean temperature varies between 14 °C and 18 °C, while annual 
precipitation is normally concentrated in spring and summer, ranging from 1000 mm to 1500 mm. Single 
rice and double rice are the two main rice cropping systems adopted in Hubei Province. The annual rice-
upland crop rotation system is dominant across the mid-west, where the landscape is generally flat with 
maximum elevations below 50 m. In the mid-east, a double-rice cropping system is commonly adopted, 
where the more hilly landscapes may result in more heterogeneous land cover types. Rice contributes a 
significant portion of the total arable area in Hubei, with approximately 22000 km2 of area sown to paddy 
rice (NBS, 2016).  

 
Fig. 1 

Fig. 1 The spatial extent of Hubei Province and locations of sample sites. 
 

MODIS satellite products 

The MODIS 8-day composite gridded Surface Reflectance Product (MOD09Q1) of 2016 was used to 
calculate NDVI in this study. Each MOD09Q1 pixel value is the best quality observation during the 8-day 
composite period. MOD09Q1 data provide surface spectral reflectance of visible-red (VISR) and near-
infrared (NIR) band at 250-m spatial resolution. The MODIS yearly Land Cover Type product (MCD12Q1) 
was adopted to create a non-rice mask of evergreen forests and stable water bodies to assist rice recognition. 
All of the MODIS datasets were downloaded from the USGS Land Processes Distributed Active Archive 
Center (http://lpdaac.usgs.gov) and reprojected to the WGS1984-UTM coordinate system (zone 49N). 
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Digital Elevation Model (DEM) data 

 
To diminish the potential influence of the terrain factors on the estimate of rice area, a global 90-m 

raster SRTM void-filled elevation data was acquired from the USGS Global Visualization Viewer (GloVis) 
server (https://glovis.usgs.gov/). The slope data were calculated from the elevation data in the ENVI 
software (Exelis Visual Information Solutions, Boulder, CO, USA). Both the elevation and slope data were 
spatially aggregated to 250-m resolution. 

 

Evaluation datasets 

 
Two field surveys were conducted throughout the main rice planting areas from March 30 to April 14, 

2017, and from October 6 to October 9, 2017, in Hubei Province. A total of 124 sample sites (including 40 
ratoon rice samples, 45 traditional rice samples, and 39 non-rice samples), located with GPS, were set 
randomly distributed at approximately 5-km intervals. Additionally, high-resolution Google Earth imagery 
was commonly employed as a complementary source of ground truth dataset for coarse-resolution image 
classifications, owing to its availability for easy visual interpretation of the land cover (Beck, 2006; Knorn 
et al., 2009; Dorais and Cardille, 2011; Peng et al., 2011). We used the satellite images during the rice 
growing season of 2016 in Google Earth as the reference dataset. We then randomly collected 46 more non-
rice samples from Google Earth images by visual interpretation around the rice paddy sites. In general, a 
total of 170 field sites were randomly selected across the rice planting area in Hubei Province as an 
evaluation dataset (Fig. 1). 

Agricultural census data of ratoon rice planting areas in Hubei Province were provided by Huazhong 
Agricultural University and local agricultural agencies. They were compared with the remote sensing-
derived results at the county level to assist in accuracy assessment. 

 
METHODOLOGY 

 

Reconstruction of time-series MODIS NDVI imagery 

 
The cloud contamination appears particularly in the hilly area of mid-south China, thick clouds may 

obscure the land surface over a long time due to the monsoonal climatic conditions. To well capture the 
vegetation signals related to rice planting, the residual impact of persistent cloud cover in MOD09Q1 
observations needs to be diminished before further analysis. 

We used the Iterative Interpolation for Data Reconstruction (IDR) method to minimize the effects of 
cloud contaminations and construct high-quality NDVI time-series datasets throughout the year 2016. This 
approach was oriented towards removing the impacts of cloud contamination in the NDVI time series (Julien 
and Sobrino, 2010). The NDVI time-series profile is computed pixel by pixel from the preprocessed 
MOD09Q1 dataset. The mean NDVI value of the preceding and following observations is compared to the 
original NDVI for each time point. A replacement will be carried out when the maximum difference between 
the original and averaged time series is larger than the threshold (was set to 0.1 in this work suggested by 
Liu et al. (2017)). Then a new alternative time series is calculated from the averaged time series, and the 
process is iterated until the upper envelope of the NDVI time-series profile is reached. IDR has been shown 
to outperform the other commonly used methods (e.g. double logistic fitting) about the conservation of 
uncontaminated NDVI values (Julien and Sobrino, 2010). The main advantage of IDR is that it requires few 
parameter inputs and well conserves the upper envelope of the NDVI time-series profile (Sobrino and Julien, 
2013). Since the temporal resolution of the original NDVI dataset was 8 days, the reconstructed time series 
was then temporally interpolated to daily scale for NDVI extractions in later procedures using a spline 
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interpolation function (White et al., 2009). NDVI is computed from the VISR (620–670 nm) and NIR (841–
875 nm) band surface reflectance values: 

                 
NIR VISR

NDVI
NIR VISR





                                                                  (1) 

 
Non-rice paddy mask 

 
Firstly, to reduce the potential impacts of non-rice land-use types on rice paddy recognition, a mask of 

natural perennial plantation and permanent water bodies was necessary. We used the MCD12Q1 to generate 
non-rice paddy masks for separating water and evergreen forest from rice paddy pixels.  

Secondly, although much of the rice cultivation in Hubei Province occurs in flat plains, there is some 
hilly landscape in the far west of the study area. This would pose challenges to the rice recognition process. 
Therefore, we adopted a regional terrain mask (Dem<1500 m & Slope<15°) from Li et al. (2020) to 
eliminate the potential influence of topography on the performance of the MODIS-based rice paddy 
recognition procedure. 

 

Derivation of NDVI difference images between key rice growth stages  

 
The Empirical Bayesian Kriging (EBK) interpolation method was adopted to achieve gridded spatial 

distribution of rice crop calendar information of the study area from the crop phenological observations at 
211 agricultural meteorological stations (Supplementary Table S1 and Table S2), which were acquired from 
the China Meteorological Data Sharing Service System (http://data.cma.cn/data). The spatial resolution of 
the gridded interpolated rice calendar is 250 m. We used the Agro-phenological Atlas of China to correct 
and supplement the national site-based rice growth calendar (Zhang et al., 1987).  As a modern spatial 
interpolation algorithm, EBK has been applied in numerous recent studies in agricultural sciences 
(Samsonova et al., 2017; Nocco et al., 2019). The primary advantages of EBK over other conventional 
kriging methods include: 1) it enables both stationary and non-stationary local representations for the 
stochastic spatial process; 2) it automates the data transformation into a Gaussian distribution; 3) it 
automates the parameter calculations of building a valid kriging model; 4) it accounts for the model 
uncertainty in variable prediction; and 5) it can outperform the other kriging method with a relatively small 
dataset available (Krivoruchko, 2012; Gribov and Krivoruchko, 2020). 

We further computed the corresponding NDVI difference (ΔNDVI) between the transplanting date and 
heading date pixel by pixel in terms of the spatial dataset of rice growth calendar: 

                                                                   heading transplantingNDVI NDVI NDVI                                       (2) 

where NDVIheading and NDVItransplanting are the NDVI values for a given pixel of the heading and transplanting 
date, respectively. 

 

Mapping traditional and ratoon rice paddies 

 
Fig. 2 provides a schematic workflow of the MODIS-based rice/ratoon rice identification approach. 

The changes of NDVI between rice transplanting and heading stage on the MODIS images were used to 
map rice areas. We used a gridded rice crop calendar to choose the corresponding NDVI value from the 
time-series remote sensing imagery pixel by pixel a priori for rice detection. Based on the derived overall 
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rice map, we developed a ratoon rice index (RRI) to automatically detect ratoon rice pixels from the NDVI 
time series. 

 
Fig. 2 

Fig. 2 Schematic workflow of the traditional and ratoon rice detection based on MODIS data. RRI: ratoon 
rice index. ΔNDVI: the NDVI difference between the transplanting stage and heading stage. 
 

Methodology for identifying rice paddy.   The major challenge for differentiating rice from other upland 
crops (e.g., corn) is to detect their phenological divergences. Transplanting is a unique growth stage to rice 
cultivation. During a single rice growing season, the vegetation index (VI) value usually reaches a low point 
at the flooding and transplanting stage due to the coverage by a mixture of rice leaves and water over the 
paddy surface, and it rises to a high point and peaks at the heading stage (the end of reproductive phase) 
when the vegetation signal dominates the paddy surface (Peng et al., 2011; Li et al., 2020). It makes the 
NDVI differentiation during this period of rice should be larger than other crop types (see the RESULTS 
section). To guarantee the simplicity and maximize the generalization of the algorithm, we introduced NDVI 
as the only remote sensing index in the formulations.  

As the NDVI difference between the transplanting stage and heading stage is expected to reach or 
approximate the maximum during the growing season, two NDVI tiles were collected for Hubei Province 
based on the derived spatial dataset of rice growth calendar pixel by pixel. One NDVI tile was on the 
transplanting date, and the second was on the heading date. Last, we synergistically performed image 
differencing and segmentation on the two-date NDVI tiles during the rice growing season to map the rice 
paddy distribution.  

Li et al. (2020) developed a robust phenology-based approach to map rice paddies in China using the 
MOD09Q1 data. An Otsu’s algorithm-based auto-thresholding process was introduced to track those image 
pixels that experienced a relatively larger change in NDVI from transplanting to heading stage (Otsu, 1979), 
which would be recognized as rice pixels. Notwithstanding Otsu’s method was able to obtain fairly good 
classification results, it still fell prey to some flaws. First, original NDVI images of transplanting and 
heading date were directly used based on the mean date of the stationary rice growth calendar. The NDVI 
variation may not be well captured at the county level. Second, Otsu’s method usually fails to approximate 
the accurate NDVI threshold where the rice paddy accounts for a relatively small fraction of the landscape 
because the assumption of a bimodal histogram distribution would be violated (Kittler and Illingworth, 
1985). 

To better differentiate rice from the other land use categories under various fractional cover of rice 
cultivation, we used an integral image-based adaptive thresholding algorithm to automatically determine 
the threshold for the NDVI difference image segmentation. The adaptive thresholding method employed 
here not only accounted for spatial variations in illumination but also was robust to illumination or other 
problems in the image. An integral image was calculated from the ΔNDVI over overlapped predefined 
rectangular windows in constant time. Then, a flexible threshold value (local average of the integral image) 
was assigned to each image pixel. Finally, a peak-valley detection algorithm was adopted to automatically 
find dominant peaks and valleys of the achieved threshold image histogram (Silva et al., 2010). The 
maximum threshold (Tmax) of “valleys” was determined for pixel-wise rice identification (Fig. 3):  

max
,

max

Rice,       

Non-rice, i j

NDVI  T
Class

NDVI  T

  
   

                                     (3) 

A detailed description of the adaptive thresholding method and data processing can be found in Bradley 
and Roth (2007). We conducted radiometric normalization before the image segmentation in the ENVI 
software to further minimize radiometric differences between two images caused by changes in atmospheric 
and illumination conditions (Canty, 2014). 
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Fig. 3 

Fig. 3 Histogram of ΔNDVI threshold values within (a) early rice, (b) late rice, and (c) middle rice growth 
period in Hubei (red dashed line position is the determined threshold for rice pixels). 

 
Methodology for identifying ratoon rice paddy.   Cross-correlogram spectral matching (CCSM) is a 

widely used method for key absorption feature matching. It constructs cross-correlograms between a target 
and a reference spectrum at different match positions towards quantifying the corresponding similarities at 
a key absorption feature (Van Der Meer and Bakker, 1997; van der Meero and Bakker, 1997). As an 
extension of CCSM, Chen et al. (2016) proposed a weighted cross-correlogram spectral matching (WCCSM) 
algorithm to detect phenological change with time-series VI data. To implement the WCCSM method, the 
VI time-series profiles of the reference and target years are consequently taken as the reference and target 
spectrum. Different weights were assigned to different time points in the temporal segment in order to 
capture the subtle shifts to a reference phenological point on the reference VI time-series profile. Then, the 
weighted correlation coefficient (Rw,m) is computed between the pairwise VI time-series profiles from the 
target year/pixel and the reference year/pixel at different match positions (m). While the reference VI time-
series profile is fixed, the match position refers to the temporal shifts with the target year/pixel data to 
calculate correlation coefficients.  

Phenological differences between traditional double rice and ratoon rice crops are relatively small and 
only occur within a short time window around the harvest date of the main season (HDmain) on the reference 
NDVI profile. The key to distinguishing ratoon rice from other rice cropping systems is the timing of harvest 
of the main season. WCCSM has demonstrated its advantages as being sensitive to the shape of targeted 
NDVI profile features but insensitive to noise (Chen et al., 2016). Therefore, based on the WCCSM method, 
we designed a new ratoon rice index (RRI) to provide an effective and robust method to enhance ratoon rice 
presence in remotely sensed imagery. The basic idea is to calculate the similarity between the pairwise 
NDVI time-series profiles from a target pixel and the reference ratoon rice pixel in a specific year. First, the 
weight wi of each chosen point on the NDVI profile is set as decreasing with the temporal distance Di 
between the date ti and the reference HDmain date tr (day 232) as below:  

 2

,

1,

1
      

i r

i
i r

i r

t = t

D t t
t - t


  



                                                                 (4) 
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where n is the number of overlapped days between the reference and the target time-series profile, and tr is 
determined from the reference profile. Then, the correlation coefficient (Rm) and weighted cross-correlation 
coefficient (Rw,m) are calculated between the selected segment of the NDVI time-series profile in the target 
profile and its counterpart in the reference profile (see the RESULTS section) at different match positions 
(m) as: 

, ,
1

2 2

, ,
1 1

n

t i t r i r
i

m
n n

t i t r i r
i i

VI VI VI VI
R

VI VI VI VI

 



 

 

     
  

             
         



 
                                                                (6) 
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where wi is the weight of the ith overlapped point in both the reference and the target profile, and VIr,i and 
VIt,i are the NDVI values on the ith overlapped day of the reference time-series profile and target time-series 

profile, respectively. rVI


 and tVI


 are the mean NDVI values of the reference and target profile segments, 

whereas
w

rVI


 and 
w

tVI


 are the weighted mean NDVI values of the reference and target profile segments, 

respectively. Then, the cross-correlogram and weighted cross-correlogram are constructed pixel-wise by 
plotting Rm and Rw,m against the corresponding m. We further determine a negative match position if the 
target-pixel profile is shifted to an earlier date and a positive match position if it is shifted to a later date. As 
a result, a “0” match position implies a direct calculation of the initial/weighted correlation between the 
target and reference profiles, whereas the match position “1” implies that the NDVI time-series profile for 
the target pixel will be shifted by one day in a later temporal direction.  

The ratoon rice requires a specific and precise period for the harvest stage. According to the field survey, 
usually, the ratoon rice across the whole study area needs to be harvested within one month, since the ratoon 
season growth is mainly controlled by temperature in this stage (Yuan et al., 2019). Thus, we set the match 
position m in a range from −15 to 15 days for the cross-correlation computation. The perfect matching 
situation is that there is no temporal shift (m = 0) between the reference and target time-series profile either 
for cross-correlogram or weighted cross-correlogram. Then, the RRI to enlarge local discrepancies of the 
harvest date of the main rice crop between ratoon rice and other traditional rice systems were developed as:  
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  
         




, 

, 

                                    (8) 

where RRI is ratoon rice index, and mp and mw,p are the optimal match positions with the maximum cross-
correlation coefficient and weighted cross-correlation coefficient in the cross-correlogram, respectively. 
Match position m is set in a range from −15 to 15 days. After obtaining the maximum correlation (Rmax) and 
weighted maximum correlation (Rw, max), their significance is assessed using the t-test. If Rmax/Rw, max cannot 
pass the significance test, it is set as 0. Otherwise, the value shall be retained. 

The reference profile is the “averaged” NDVI profile between representative samples of ratoon rice 
from different geographic regions of the study area (see the RESULTS section). The generalized procrustes 
analysis (GPA) derived ensemble average NDVI time-series profile of five representative ratoon rice 
samples (from the northern, southern, western, eastern, and central part of Hubei, respectively), covered by 
homogeneous 250-m pixels, was adopted as the reference profile partly because the phenological date of 
ratoon rice varies slightly across Hubei. Finally, we again used the adaptive thresholding method to extract 
the spatial extent of ratoon rice from the RRI map. Detailed descriptions of the GPA algorithms are available 
in the work of Gower (1975) and Li et al. (2016). 

 
RESULTS 
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NDVI images of key rice growth stages 

 
Fig. 4 showed the reconstructed NDVI temporal profiles throughout 2016 at the representative rice 

crop pixels. During the rice growing season, the NDVI profiles of different rice crops were all found to 
reach a low point around the flooding and transplanting stage, constantly increased afterward, and peaked 
approximately at the end of the reproductive phase (heading stage). These results also corroborate the 
findings of previous studies (Xiao et al., 2005; Peng et al., 2011). Except for double cropping rice, large 
phenological discrepancies were found in the NDVI profiles between ratoon rice and other non-ratoon rice 
crops. The spatial distribution of transplanting date and heading date in 2012 were achieved respectively for 
early, late and middle rice using the EBK method (Supplementary Fig. S1). The general spatial variation of 
transplanting date and heading date was similar except for late rice. For early rice, both the transplanting 
date and heading date increased along the south-east to north-west direction, while the middle rice showed 
an opposite pattern. The late rice cultivation in the northeast part of Hubei Province had a relatively shorter 
growth period in contrast to both early and middle rice. Moreover, the variation range of both transplanting 
and heading date of middle rice reached 37 and 21 days, respectively, which were much larger than those 
of early and late rice. The corresponding NDVI images of transplanting date and heading date were then 
achieved based on the spatial dataset of the rice growth calendar (Supplementary Fig. S2). 

 
Fig. 4 

Fig. 4 NDVI time series of single rice, double rice, ratoon rice, and upland crop in Hubei Province (during 
ratoon rice growth period). 

 

Spatial patterns of rice paddies 

 
The resulting maps of 2016 illustrate that the spatial distributions of middle rice, early rice, and late 

rice derived from the adaptive thresholding method and Otsu’s method share a similar pattern (Fig. 5). 
Specifically, double rice crops were concentrated along the Yangtze River, the Han River, and the south-
west hilly regions, while middle rice crops mainly occurred around the Yangtze River, the Han River, and 
Nanyang Basin regions, where the irrigation condition and topography were suitable for rice growth (Fig. 
1). Late rice agriculture was more fragmented as hilly regions dominate in most of those areas, increased 
altitude and slope may restrain the appearance of rice crops.  

 
Fig. 5 

Fig. 5 Spatial patterns of (a) early, (b) late, and (c) middle rice derived from adaptive thresholding method 
and (d) early, (e) late, and (f) middle rice derived from Otsu’s method in Hubei of 2016. 

 
However, there are still evident regional discrepancies between the spatial datasets derived from the 

two methods. The derived paddy areas were 23974.0, 31141.6, and 3541.6 km2 for middle, early, and late 
rice based on Otsu’s method, respectively, while the adaptive thresholding method yielded areas of 10735.3, 
11815.4, and 4347.6 km2 for middle, early, and late rice, respectively. Otsu’s method produced notably 
larger rice planting areas than the adaptive thresholding method for both early and middle rice crops. For 
early rice, the adaptive thresholding-based method identified more rice paddies in central Hubei but less of 
that in the Dongting Lake region compared to Otsu’s method. For late rice, this method has higher fractional 
amounts in the Dongting Lake region but lower fractional amounts in Northeast Hubei. 
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Reference NDVI time-series profile for ratoon rice  

 
To implement the CCSM and WCCSM algorithms, an NDVI time-series profile of ratoon rice growing 

season (around day 140–290) is required as a reference profile. We then compared the pixel-wise NDVI 
time-series profile within the study area with the reference profile to build a cross-correlogram at different 
match positions.  Since we only utilized five selected samples to construct the reference profile (Fig. 6), this 
could further evaluate the robustness and efficiency of the method.  

 
Fig. 6 

Fig. 6 Reference NDVI profile (red line) derived from representative ratoon rice sample sites (black lines). 
Sn: the nth representative ratoon rice sample. 

 

Spatial pattern of ratoon rice 

 
We mosaicked the derived rice paddy maps from all of the rice crop systems. The mosaicked rice map 

consequently included both traditional and ratoon rice areas. We calculated the RRI of Hubei in 2016 
(Supplementary Fig. S3) within the rice area. The spatial pattern of ratoon rice was then extracted based on 
the adaptive thresholding method (Fig. 7). The ratoon rice crop was mainly distributed in the center-south 
and eastern parts of Hubei Province, which was 1283.6 km2, or responsible for 5.0% of the total rice paddy 
area. 

 
Fig. 7 

Fig. 7 Spatial pattern of ratoon rice in Hubei of 2016. 
 

Accuracy evaluation of rice paddy map 

 
The accuracies of the mosaicked rice map were subsequently accessed using confusion matrices 

calculated based on the 170 ground-truth samples. As can be seen from Table I, the overall accuracies for 
adaptive thresholding and Otsu’s methods were 88.82% and 80.00%, respectively. The rice class of adaptive 
thresholding had a higher producer and user accuracy (85.88% and 91.25%) than that of Otsu’s method 
(83.53% and 78.02%). The relatively higher Kappa coefficient was for adaptive thresholding (0.78) in 
comparison to Otsu’s method (0.60).  

 
 
 
 
 
 

TABLE I  

The comparison of classification accuracies of rice paddy maps in 2016 derived from the Otsu-based method and 
method proposed in this study. 

Method 
Ground truth (Pixels)  

Total 
Class Rice Non-rice 
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Otsu-based 

Rice 71 20 91 
Non-rice 14 65 79 
Total 85 85 170 
Prod. Acc. (%) 83.53 76.47  
User Acc. (%) 78.02 82.28  
Overall accuracy (%) 80.00%  
Kappa coefficient 0.60  

This study 

Rice 73 7 80 
Non-rice 12 78 90 
Total 85 85 170 
Prod. Acc. (%) 85.88 91.76  
User Acc. (%) 91.25 86.67  
Overall accuracy (%) 88.82%  
Kappa coefficient 0.78  

 
As an ancillary approach to the field survey, we compared the MODIS-derived rice paddy maps with 

the agricultural census data at the county level (Fig. 8). The R2 between the MODIS-derived data and the 
statistical data was 0.60 and 0.51 based on the adaptive thresholding method and Otsu’s method, 
respectively. Both correlations were significant at the level of P < 0.001 (n = 78). The RMSE between them 
was 265.2 and 745.4 km2, respectively.  

 
Fig. 8 

Fig. 8 County-level evaluation of rice paddy area estimation based on (a) adaptive thresholding method and 
(b) Otsu’s method against agricultural census data in Hubei of 2016. 

 
Thus, it can be concluded that either method can produce a substantial agreement between the rice 

maps and ground truth data (Landis and Koch, 1977). The adaptive thresholding method performs relatively 
better in correctly predicting rice paddies than Otsu’s one, especially for the early rice class, and showed 
higher consistency with the agricultural census data. 

 

Accuracy evaluation of ratoon rice paddy map 

 
The pixel-wise RRI was calculated using Eq. (8), the threshold was then determined also using the 

adaptive thresholding algorithm. We evaluated the MODIS-derived ratoon rice map based on the 170 
ground-truth samples, and the confusion matrix is shown in Table Ⅱ. The ratoon rice map had a fairly high 
producer accuracy (80%) and user accuracy (91.43%), while the omission and commission errors were 20% 
and 8.57%, respectively. The overall accuracy was 93.53%, and the Kappa coefficient was 0.81, indicating 
that the ratoon rice map corresponded well with the ground reference data.  

 
 
 
 
 

TABLE Ⅱ  

The classification accuracy of ratoon rice paddy map in 2016. 
Ground truth (Pixels) Hubei 

Total 
Class Ratoon rice Non-ratoon rice 
Ratoon rice 32 3 35 
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Non-ratoon rice 8 127 135 
Total 40 130 170 
Prod. Acc. (%) 80.00 97.69  
User Acc. (%) 91.43 94.07  
Overall accuracy (%) 93.53%  
Kappa coefficient 0.81  

 
Fig. 9 

Fig. 9 County-level evaluation of ratoon rice area estimation against agricultural census data in Hubei of 
2016. 

 
We also compared our MODIS-derived ratoon rice paddy map with the census data at the county level 

(Fig. 9). The MODIS-derived estimates of the ratoon rice area are analogous to the reported census data. 
and their correlation was significant at the level of P < 0.001 (n = 17). The results corroborated the feasibility 
of applying RRI for mapping the ratoon rice area. 

 
DISCUSSION 

 

Improvement of phenology-based rice mapping approaches 

 
Unlike other phenology-based classification approaches, which combine different vegetation indices 

that are sensitive to the changes of rice canopy and land surface water content (e.g., NDVI, EVI and Land 
Surface Water Index) (Xiao et al., 2005; Xiao et al., 2006; Peng et al., 2011; Kontgis et al., 2015), our 
method simply uses NDVI. This considerably reduces the computational cost and increases the 
generalizability of the method without compromising accuracy. It is, therefore, feasible to apply this method 
to the satellite sensor designed without a visible-blue (VISB) or shortwave-infrared (SWIR) band (e.g., 
NOAA AVHRR). Our method would facilitate the extension of rice paddy mapping efforts back to the 
1980s with the historical satellite record. The evaluation results indicate that the single VI-based method 
has the potential to accurately map different rice cropping systems. Compared to other recently developed 
MODIS-based rice mapping methods, our method shows a comparable or higher mapping accuracy in China 
(Zhang et al., 2015; Liu et al., 2020). 

As an improvement and extension of our previous effort in China (Li et al., 2020), this study 
significantly improve the accuracy of rice mapping. For both methods, the key aspect is to implement a 
binary classification on ΔNDVI images. Several factors could be responsible for the improvement of this 
study. On the one hand, the adaptive local thresholding method can capture more details of the NDVI 
variations between key rice growth stages (rice transplanting-heading period) under non-uniform 
illumination in the mosaicked MODIS 8-day composite data (Bradley and Roth, 2007),  then alternative 
local ΔNDVI thresholds were selected pixel by pixel. This method was thus capable of reflecting the slight 
discrepancies of ΔNDVI among different land cover types well but insensitive to the residual bias after 
atmospheric corrections. Based on that, the peak-valley detection algorithm determined a more precise 
threshold for final ΔNDVI image segmentation rather than directly using Otsu’s method. However, Otsu’s 
method tended to overestimate the rice paddy areas because the global ΔNDVI thresholding often fails if 
some other vegetation types were having similar phenological patterns (Fig. 4), or the atmospheric condition 
varies spatially within the daily MODIS images mosaiced from different tiles. Then it would easily form 
monomodal histogram distributions by the target image pixels, which go against the original assumption of 
a bimodal histogram distribution (Supplementary Fig. S4). On the other hand, the proposed method uses an 
ΔNDVI image derived from the gridded rice growth calendar rather than a mean date of the stationary rice 
growth calendar. Although the rice growth phenology remains relatively stable throughout Hubei Province 
for double rice crops, the sub-regional disparities in transplanting and heading date can exceed 20 days for 
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middle rice, partly due to the farmer’s choice and/or meteorological condition (Supplementary Fig. S1). 
Using a fixed rice growth calendar for the whole study area would certainly bring bias in creating the ΔNDVI 
image. Notwithstanding these advances, our approach is largely dependent upon the local rice growth 
calendar data, the lack of continuous and timely rice spatial phenological datasets may somewhat hinder the 
application of this method. A future study hence should be carried out to establish time-series geospatial 
databases of rice growth calendar for China using a remote sensing approach. 

 
Strengths and limitations of RRI 

 
Ratoon rice identification largely relies on the short time window of harvesting of the main rice crop. 

The data availability can limit the use of single-date image classification methods in persistently cloudy 
areas (e.g., monsoon Asia). In this research, we developed a strategy to map ratoon rice areas automatically 
from reconstructed time-series NDVI data. The newly proposed RRI was found to be feasible by 
dramatically enlarging the phenological difference between ratoon rice and the other rice cropping systems 
based on their unique phenological characteristics. After masking out the non-rice areas based on a 
readymade rice map, the adaptive thresholding method was once again employed to automatically identify 
ratoon rice from the RRI map. The performance of the method has been examined using ground surveys 
and agricultural census data. The high overall accuracy (93.53%) and Kappa coefficient (0.81) demonstrated 
that the reference VI profile could be reliably derived from very few sample sites, probably because the 
ratoon rice growth calendars are much the same in Hubei Province (a specific region). The RRI could 
effectively produce accurate ratoon rice maps with an automatic threshold section.  

Several caveats regarding the limitations of the regional mapping for ratoon rice using RRI should be 
addressed. First, as mentioned above, a high-quality reference VI profile of ratoon rice is required before 
calculating RRI. It relies on ground surveys for precise sample site locations because it is very difficult to 
directly visually interpret ratoon rice from other rice cropping systems even using high-resolution satellite 
imagery. Second, a readymade rice base map is also needed to exclude the influence of other crop types 
prior to extracting ratoon rice, although there are already a few continental-scale products available in the 
public domain.  

The consistency between the MODIS-derived and statistical agricultural data of traditional rice systems 
was distinctly lower than that of ratoon rice. The likely causes may be associated with two aspects. First, 
compared to the official agricultural census, the ratoon rice area statistics provided by Huazhong 
Agricultural University and local agricultural agencies could be more biased due to policy impacts and lack 
of rigorous data quality control (Smil, 1999; Frolking et al., 2002). Second, the producer accuracy of the 
ratoon rice map (80.00%) was markedly increased after the exclusion of misclassified total rice sites 
(88.89%, Supplementary Table S3). This implied that the accuracy of the rice base map can have a direct 
impact on the ratoon rice extraction result.  

 
CONCLUSIONS 

 
This study showed that the spatial pattern of multiple rice cropping systems including ratoon rice can 

be mapped accurately at a large scale with only time-series MODIS NDVI imagery and phenology 
information. With the aid of spatial database of the rice growth calendar, NDVI tiles of the key rice growth 
stages (transplanting and heading stages) were well reconstructed, which could capture the difference 
between the two key rice growth stages more precisely. In conjunction with the automatic image 
thresholding procedure, the NDVI difference image was optimally segmented to characterize the pixels as 
‘rice’ or ‘non-rice’. Then, a new index - RRI for automatically mapping ratoon rice was proposed based on 
the readymade rice map. To our knowledge, the mapping approach for the alternative rice cropping system-
ratoon rice was explored based on MODIS data for the first time. Good linear relationships were obtained 
between the satellite-derived result and the agricultural census data for both traditional rice and ratoon rice 
crops. Compared to the previous MODIS-based rice mapping algorithm, this improved algorithm can 
produce more accurate rice paddy cover maps of traditional single and double rice crops separately. The 
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proposed strategy can also be extended to other time-series multi-spectral remotely sensed data without a 
VISB or SWIR band for mapping multiple rice cropping systems across a much broader temporal extent.  
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