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ABSTRACT 

Soil metaproteomics has excellent potential to elucidate how soil microbial communities could 

change structurally and functionally in response to environmental alterations. However, soil 

metaproteomics is hindered by some challenges and gaps. Soil microbial communities possess 

extremely complex microbial composition, including many uncultured microorganisms without whole-

genome sequencing. Thus, how to select a suitable protein sequence database remains challenging in 

soil metaproteomics. The Public database and Meta database were constructed using protein sequences 

from public databases and metagenomics, respectively. Here we comprehensively analyzed and 

compared the soil metaproteomic results using these two kinds of protein sequence databases for protein 

identification based on a published soil metaproteomic raw data. The results demonstrated that much 

more proteins, higher sequence coverages, and even more microbial species and functional annotations 

could be identified using the Meta database compared with those identified using the Public database. 

These findings indicated that the Meta database was more specific as a protein sequence database. 

However, the follow-up in-depth metaproteomic analyses exhibited similar main results regardless of 

the databases used. The microbial community composition at the genus level was similar, especially 

these species annotations with high Peptide-spectrum match and high abundance. The functional 

analyses in response to stress, such as the gene ontology enrichment about biological progress and 

molecular function, and key functional microorganisms, were also similar regardless of databases. Our 

analysis revealed that the Public database could also meet the demand to explore the functional 

responses of microbial proteins to some extent. This study provides valuable insights into the choice of 

protein sequence databases and their impact on the subsequent bioinformatics analysis in soil 

metaproteomic research for better experimental design for different purposes. 

Key Words:  bioinformatics, microbial communities, protein sequence database, soil metagenomics, 

soil metaproteomics 

 

 

INTRODUCTION 

 

Soil is a dynamic system with complex and heterogeneous physical, chemical, and biological 

interactions. Soil microorganisms play critical roles in ecosystems and are heavily involved in a large 

number of biogeochemical processes, including nutrient acquisition, recycling of elements (carbon, 

nitrogen or phosphorus (P)), and organic matter transformation (van der Heijden et al., 2008; Bastida 

et al., 2009). Recently, several molecular techniques have been applied to explore soil microbial 

communities and their functions, mainly metagenomics (Daniel, 2005), metatranscriptomics 

(Carvalhais et al., 2012), and metaproteomics (Keiblinger et al., 2016). The metagenomics was widely 

                                                 
*Corresponding author. E-mail: plan@issas.ac.cn. 



used and provided compositions and diversities of soil microbial communities. However, the 

metagenome information represents only the prediction of community functional potential. It is 

necessary to measure the actual expression of genes at the mRNA and protein levels. Correspondingly, 

metatranscriptomics and metaproteomics could display the soil microbial responses to environmental 

stimuli transcriptionally and post-transcriptionally, respectively. Since proteins carry out most functions 

in cells, the investigation of metaproteomics, the protein expression in soil microbiota, can expand the 

understanding of why and how the microbiome changed the community structure to adapt to the 

environmental stimuli. Furthermore, we can elucidate the roles of soil microbe in the uptake of nutrients 

for plant and biogeochemical cycles of elements in the soil at the protein level. The metaproteomics 

could integrate the community structure, functions, and regulation of soil microorganisms (Nannipieri, 

2006; Renella et al., 2014; Jansson and Hofmockel, 2018). 

Due to the extremely spatial-temporal complexity and heterogeneity of the soil matrix, pH, mineral 

nutrition, organic compounds, and microorganisms, the development of proteomics in soil lags far 

behind proteomics in other fields (Maron et al., 2007; Chapman and Bellgard, 2014). Among these 

challenges, there are two prior problems to be solved. First, the complicated compositions of soil, such 

as humic compounds and clay, significantly affected the extraction efficiency of soil protein (Chourey 

et al., 2010; Burns et al., 2013; Tartaglia et al., 2020). The low extraction efficiency and purity of 

proteins seriously interfered with the downstream protein identification of mass spectrometry. However, 

several effective methods for soil protein extraction were developed in the past decade, such as the cell 

lysis step using the alkaline detergent buffer and purification step using trichloroacetic acid 

(TCA)/acetone solution (Murase et al., 2003; Benndorf et al., 2007; Chourey et al., 2010; Wang et al., 

2011; Johnson-Rollings et al., 2014; Xiong et al., 2016; Kunath et al., 2019). The removal of humic 

substances can conduct by phenol extraction and differential solubility at low pH at the tryptic digestion 

step (Qian and Hettich, 2017). Besides, protocols like filter-aided sample preparation (FASP) 

(Wiśniewski et al., 2009) could also help to remove other contaminants (Zampieri et al., 2016). All 

these processes significantly increased the quality of soil protein extraction, meeting the requirement 

for analysis in a high-resolution mass spectrometer. Second, protein identification and bioinformatical 

evaluation are also challenging, particularly construction of databases, grouping of redundant proteins, 

and taxonomic and functional annotation (Heyer et al., 2017). Different samples contain many soil 

microbial proteins with high amino acid similarity due to minor strain variations, horizontal gene 

transfer, or recurring functional domain. The identical peptides belonging to homologous proteins cause 

redundant protein identification, making it hard to obtain precise functional interpretation. Also, the 

proteins from the closely related species usually have high amino acid similarity, making it difficult to 

get accurate taxonomic annotations (Nesvizhskii and Aebersold, 2005; Heyer et al., 2017; Kunath et 

al., 2019). 

Unlike sequencing techniques used in genomics and transcriptomics, mass spectrometry in shotgun 

proteomics is commonly conducted depending on the use of database search engines nowadays 

(Verheggen et al., 2020). In this approach, the MS or MS/MS spectra should be matched to theoretical 

peptides from the in-silico digested protein sequence database for protein identification. It was well 

known that soil microbial communities contain thousands of different microbial species, and their 

composition varies considerably among soil samples (Torsvik and Øvreås, 2002; Muth et al., 2015). 

Thus, the construction of well-suited protein sequence database becomes more challenging in soil 

metaproteomics, and needs to be first solved (Yadav et al., 2012). In some proteogenomic researches 

about artificially assembled microbial communities (Tanca et al., 2013; Kleiner et al., 2017) and low-

complexity microbial communities, such as human oral (Grassl et al., 2016) and gut (Muth et al., 2015; 

Brown et al., 2018), the specificity and sensitivity of reference protein sequence databases obtained by 

16S-rRNA profiling, curated public databases and metagenomic sequencing have been meticulously 

validated. Only part of peptides is identified in common by these three kinds of databases (Tanca et al., 

2016). The microbial species and abundance obtained by amplicon-based sequencing, metagenomic 

sequencing, and metaproteomic mass-spectrometry cannot correlate well (Kleiner et al., 2017). 

Taxonomic and functional results were strongly database-dependent (Tanca et al., 2016). The short-

read-length 16S-rRNA profiling limits the accuracy of detecting microbial species at a deep level of 

reference protein sequence databases built by this technology (Johnson et al., 2019). The binning and 

assembly in metagenomic workflow and complete microbial genomes in public databases relieve this 

defect to a certain extend. However, the incompleteness of reference protein sequence databases built 

by metagenomic sequencing and distantly related taxonomic composition of curated public databases 

affect the quantification of proteins and organisms in proteomic research about high-complexity 

communities such as soil. There have not been systematic studies focused on the selection of protein 

sequence databases in soil metaproteomics yet. 



Recently, the protein sequence databases used in soil metaproteomics are mainly classified into 

two types, the protein sequences from public database (Wang et al., 2011; Bastida et al., 2014; Johnson-

Rollings et al., 2014; Bastida et al., 2016) and the protein sequences predicted by the assembly of 

metagenomic sequencing results (Butterfield et al., 2016; Yao et al., 2018). Public databases were 

widely used in previous researches because of the high expense of metagenomics. In the 

metaproteomics analysis of ratoon sugarcane rhizospheric soil, only 143 protein spots were identified 

via 2-DE and MALDI TOF-TOF MS analyses using a public database from NCBI (Lin et al., 2013). 

Later, liquid chromatography with tandem mass spectrometry (LC-MS/MS) significantly increased the 

number of identified proteins. Using a public database derived from UniRef100, about 1048 proteins 

were identified in three soil samples with different organic matter contents using Chourey's method of 

protein extraction and LC-MS/MS analyses (Chourey et al., 2010; Bastida et al., 2014). Likewise, using 

a public database derived from the NCBI, about 3 082 non-redundant (nr) proteins were identified in 

soils from a dryland region. Recently, proteogenomics (metagenomics and metaproteomics) is being 

applied in analyses of soil microbial communities and functions. Subsequently, more and more studies 

used the assembly of metagenomics as the protein sequence database. The soil microbial communities 

in the sub-root zone were systematically analyzed (Butterfield et al., 2016). The protein sequences from 

metagenomics data of four soil samples were used as the database for metaproteomics, including 3 408 

250 predicted protein sequences. A total of 6 835 proteins were identified based on 28 782 distinct 

peptides. The methylotrophy proteins were among the most abundant proteins. In researching the 

systemic impact of P availability in the tropical forest, the P-deficient and P-rich soils that endured a 

17-year fertilization experiment were analyzed using proteogenomics (Yao et al., 2018). An average of 

7 114 proteins was identified per soil sample, using the protein sequences predicted from the 

metagenome of this soil sample. Proteins for the degradation of P-containing nucleic acids and 

phospholipids were significantly enhanced in the P-deficient soils. 

Despite the rapid development of high-resolution mass spectrometry in recent years, it is still a 

lack of efficient and standardized data analysis processes for complex samples such as soil 

metaproteomics. In analyzing uncharacterized microbial communities, different protein sequence 

databases indeed significantly affected the results of protein identification (Muth et al., 2015; Tanca et 

al., 2016; Xiao et al., 2018). In fact, soil microbial communities possess extremely complex microbial 

composition, which greatly increased the difficulty of protein identification in soil metaproteomics. 

However, no comprehensive information is available about the influences of protein sequence databases 

on protein identification in soil metaproteomics so far. Here, we systematically demonstrated and 

compared the typical strategies of construction of protein sequence databases in soil metaproteomics 

studies and the downstream bioinformatics analyses. The differences in the number of identified 

proteins, taxonomic and functional annotations, Gene Ontology (GO) enrichment, and phylogenetic 

relationships were all displayed. We try to offer a more comprehensive understanding of how protein 

sequence databases influence soil metaproteomic results, helping the future experimental design of soil 

metaproteomics. 

 

MATERIALS AND METHODS   

 

Data collection 

The soil metaproteomics data were obtained from P-rich and P-deficient soils in a 17-year 

fertilization experiment in the tropical forest by shotgun proteomics measurements (Yao et al., 2018). 

The soils of each treatment were collected from two plots with two technical replicates, P-rich soils 

from plots 1 and 30 and P-deficient soils from plots 6 and 36. The MS/MS raw files and the fasta files 

of predicted protein sequences were downloaded from ProteomeXchange databases (PXD005910). 

 

Generation of protein sequence databases 

For assessing the influence of protein sequence databases on protein identification and further 

bioinformatics analyses, two typical databases were constructed, named the Meta database and the 

Public database (Fig. 1). The Meta database was obtained from the metagenomic datasets of the 

corresponding soil samples described by (Yao et al., 2018) with some modification. The predicted 

protein sequences in the four fasta files obtained from four samples were merged into one file. In this 

file, duplicated sequences with the amino acid identity of 100% were removed by SeqKit (version 0.12.1) 

(Shen et al., 2016), and only one copy of the duplicated sequences was kept. The non-redundant fasta 

file was considered as the Meta database. Another kind of protein sequence database was derived from 

the Public database, generated as follows. All related protein sequences were selected from the NCBI 

protein database with the entries contained the keywords, soil or rhizosphere, and the organisms limited 



to fungi, protists, bacteria, archaea, or viruses (downloaded on October 30, 2018). The selection was 

done by R packages 'Rentrez' (version 1.2.2) (Winter, 2017) and 'Parallel' (version 4.0.2). Analysis 

using R packages in this study is performed in the R software environment (version 4.0.2) in Ubuntu 

18.04.5 LTS (Bionic Beaver) developed by R Core Team (2019). According to the range of sequence 

length in the Public database, the protein sequences with a length shorter than 10 amino acids or longer 

than 2 700 amino acids were removed by SeqKit (version 0.12.1) (Shen et al., 2016). For the large 

number of protein sequences with high sequence similarity from NCBI, the redundancy was reduced 

with 90% similarity by CD-HIT (version 4.8.1) (Fu et al., 2012). The generated fasta files were used 

for protein identification. The processed data and codes used in this study are all available in the GitHub 

repository for share (Chiapello et al., 2020), https://github.com/xyz1396/Meta-proteomics-analysis-

pipeline-based-on-Proteome-Discovery-output. 

Fig. 1  Schematic illustration of the soil metaproteomics analyses using two strategies of protein sequence 

database construction. In this analysis, we skipped the assembly and prediction steps, and downloaded the 

predicted protein sequences in the archive. 

 

Protein identification using the Meta database and Public database 

The MS/MS raw files were searched using Proteome Discoverer (version 2.2, Thermo Scientific) 

against the Meta database and Public database, respectively. The contaminated protein sequence 

database was from cRAP (The Global Proteome Machine, http://www.thegpm.org/crap/). The protein 

quantification strategy was modified from the Label-free quantification template in Proteome 

Discoverer. The search engine was Sequest HT (built in Proteome Discoverer), and the confidence of 

the identified proteins was measured by the decoy search strategy. The mass tolerances of precursor 

ions and product ions were 10 ppm and 0.02 Da, respectively. Precursor's mass range was from 350 Da 

to 5 000 Da, and the S/N threshold was 1.5. Trypsin was set as the proteolytic enzyme, and two missed 

cleavages at most were allowed. Cysteine carbamidomethylation was set as static modification, and 

methionine oxidation was set as a dynamic modification. Protein abundances were calculated by the 

intensity of the precursor, and the identified proteins were grouped by the maximum parsimony 

principle. Contaminated proteins and proteins with a false discovery rate (FDR) greater than 0.01 were 

removed by R package 'dplyr' (version 1.0.1) (Wickham et al., 2015) to obtain protein groups. Proteome 

Discoverer selected the representative protein with the largest value in the "Protein Unique Peptides 

column" and the smallest value in the "Coverage column" (the longest protein) from each protein group. 

The representative proteins with high confidence were used for downstream analysis. 

 

Bioinformatics analysis 

The protein abundance analysis and visualization were accomplished by R packages 'ggplot2', 

(version 3.3.2) (Wickham, 2011), 'ggforce' (version 0.3.2) (Pedersen, 2016), 'limma' (version 3.44.3) 

(Smyth, 2005), 'DESeq2' (version 1.28.1) (Love et al., 2014), 'VennDiagram' (version 1.6.20) (Chen, 

2016), 'pheatmap' (version 1.0.12) (Kolde, 2015), and 'UpSetR' (version 1.4.0) (Conway et al., 2017). 

Further, the matched protein sequences were extracted by R package 'Biostrings' (version 0.34.0) (Pagès 

et al., 2019) and aligned against the NCBI nr database by the locally installed BLAST (version 2.10.1+) 

(Madden, 2013). The alignment results were parsed by Blast2Go (version 5.2.5) for GO annotations 

(Conesa et al., 2005). The KEGG annotations were obtained from the ghostKOALA website (Kanehisa 

et al., 2016). The taxonomic interpretation of the proteins identified using the Public database was 

obtained from the NCBI by taxize (version 0.9.98) (Chamberlain and Szocs, 2013). Taxonomic 

interpretations of proteins identified by both databases were also obtained from the ghostKOALA 

website for more accurate interpretation at the genus level. The visualizations of annotation results were 

accomplished by R packages 'stringr' (version 1.4.0) (Wickham, 2017), 'tidyr' (version 1.1.1) (Wickham 

and Henry, 2019), 'clusterProfiler' (version 3.16.0) (Yu et al., 2012), and 'GO.db' (version 3.11.4) 

(Carlson, 2019). 

Protein sequences of phosphatases and phospholipases were extracted to build the phylogenetic 

trees by MEGA X (version 10.0.5) (Kumar et al., 2018), and the conserved motifs were obtained by 

Meme (version 5.1.1) (Bailey et al., 2009). The motif sequences were annotated by Web CD-Search 

Tool (Marchler-Bauer and Bryant, 2004). The visualizations of the phylogenetic tree and motif were 

accomplished by TBtools (version 1.068) (Chen et al., 2018). 

https://github.com/xyz1396/Meta-proteomics-analysis-pipeline-based-on-Proteome-Discovery-output
https://github.com/xyz1396/Meta-proteomics-analysis-pipeline-based-on-Proteome-Discovery-output
http://www.thegpm.org/crap/


RESULTS AND DISCUSSION 

More proteins and higher sequence coverages were obtained using the Meta database 

Two typical protein sequence databases, the Meta database and Public database, were generated 

(Table 1). Taken as a whole, the total numbers of proteins and total lengths of proteins were very similar 

between the two databases, as well as the protein length distributions. In both databases, most proteins 

(about 93 -- 95%) had 51 -- 800 amino acids. Moreover, the number of proteins was the highest in the 

length range of 201 − 400 amino acids, and gradually decreased when the lengths were higher than 400 

or lower than 201. The average protein length (263 amino acids) based on the Meta database was shorter 

than that for the Public database (316 amino acids). Overall, the two databases were nearly the same 

size, which avoided the retrieval differences in search space. 

TABLE I The detailed information of two protein sequence databases. 

Protein length (amino acids) Number of proteins Proportion (%) 

Meta database  Public database Meta 

database  

Public 

database 

0 -- 50 439 980 95 298 4.66 1.08 

51 -- 100 1 388 280 927 419 14.70 10.54 

101 -- 200 2 530 885 2 087 094 26.80 23.72 

201 -- 400 3 346 212 3 458 216 35.43 39.31 

401 -- 800 1 537 865 1 872 361 16.28 21.28 

801 -- 1 600 195 288 330 747 2.07 3.76 

1 601 -- 3 200 5 594 26 573 0.059 0.30 

3 201 -- 12 200 334 0 0.004 0.00 

Total number of proteins 9 444 438 8 797 708   

Total length of proteins 2 480 437 575 2 777 724 902   

Average protein length 263 316   

 

The same MS/MS raw files were searched against the two databases, respectively. The different 

proteins in one protein group shared the same peptides, and the representative protein of each identified 

protein group was used for further bioinformatic analysis. A total of 170 565 proteins in 18 947 protein 

groups with high confidences were identified using the Meta database, while only 20 779 proteins in 4 

320 protein groups were identified using the Public database (Fig. 2a and Table S1). The numbers of 

protein groups and proteins using the Meta database were about 4.4-folds and 8.2-folds higher than 

those identified using the Public database. This result indicated that the Meta database was more specific 

for protein identification. The protein length distribution of the representative proteins using two 

databases was displayed in Fig. 2b. Although the numbers of identified proteins in every length were 

much higher using the Meta database, the proportion in each protein length range was similar between 

two databases (Table S2). The highest proportion (about 45%) of the identified proteins was in the 

length range of 201 -- 400 amino acids. The protein coverage distribution of the representative proteins 

exhibited significant differences using two databases (Fig. 2c). Using the Public database, about 75% 

of the proteins had sequence coverages of 0-10%, while the percentages of the identified proteins with 

high sequence coverages (higher than 20%) were extremely low, only about 6% (Table S2). Using the 

Meta database, the sequence coverages were more evenly distributed from 0 to 100% (Fig. 2c). Notably, 

the percentages of proteins with sequence coverages higher than 30% were up to 14%, which was only 

1% using the Public database. In short, higher proportion of proteins with high sequence coverages 

obtained using the Meta database indicated more specificity of the Meta database as protein sequence 

database for protein identification. 

Fig. 2  The total number of protein groups and proteins identified using the two protein sequences databases (a). 

The distribution of protein lengths (b) and sequence coverages (c) of the representative proteins in each identified 

protein group using two databases. 

 

The identified proteins using the two databases were aligned with each other by BLAST with a 

cutoff of E-value of 10-6. The distributions of the amino acid identity, alignment length, bit score and -

log10(E-value) of the two identified protein sets showed extremely significant differences by Wilcoxon 



tests. It was proved that neither set of the identified proteins was sub-sequence of the other one (Fig. 

S1). About 86% of proteins identified by the Meta database could be matched to the proteins identified 

by the Public database, and the median value of identity was 64.95%. In comparison, most proteins 

(98%) identified by the Public database could be matched to the proteins identified by the Meta database, 

and the median value of identity (75.25%) was higher. It also indicated that the proteins identified by 

the Meta database were more specific than those identified by the Public database. 

The repeatability of the identified proteins for each treatment using the two databases was 

displayed by UpSet plots and abundance heatmaps. Regardless of the used databases, majority of the 

identified proteins were shared between the four samples within the same treatment, especially the two 

technical replicates from one plot (Fig. S2). The abundance heatmaps demonstrated the low within-plot 

variation and high cross-plot variation regardless of the used database (Fig. S3). The samples from two 

plots of the P-rich soils even did not cluster together regardless of used databases. 

More unique proteins and differentially expressed proteins in response to P deficiency were identified 

using the Meta database 

To fully assess the impact of different reference databases on the final soil metaproteomic results, 

the identified proteins between P-deficient and P-rich soils were compared (Fig. 3). Using the  Meta 

database, 2 069 and 2 675 unique proteins were identified only in the P-rich soil and P-deficient soil, 

respectively. Using the Public database, the unique proteins identified only in the P-rich soil and P-

deficient soil were 450 and 559, respectively. Undoubtedly, the numbers of unique proteins were much 

higher using the Meta database. However, the percentages of unique proteins were similar, about 25.04% 

(4 744 proteins) using the Meta database and 23.36% (1 009 proteins) using the Public database in all 

identified proteins. 

Fig. 3  Different identified proteins between the P-deficient and P-rich soils using the two protein sequence 

databases, the Meta database (a) and the Public database (b). 

 

The differentially expressed proteins (DEPs) in response to P deficiency were classified based on 

criteria that fold changes of protein abundances were above 2 or under 1/2 between the two kinds of 

soils (P-deficient/P-rich), and the adjusted p values were under 0.05 (Table S3). Among the proteins 

identified using the Meta database without missing value of fold change and adjusted P-value, 1 319 

and 1 539 proteins were up-regulated and down-regulated under P-deficient treatment, respectively (Fig. 

4a). While for the proteins identified using the Public database, only 426 and 488 proteins were up-

regulated and down-regulated, respectively (Fig. 4b). The DEPs identified by the Meta database were 

about 3.13-folds more than those identified by the Public database. It is noted that the proportion of 

DEPs identified using the Public database (25.00%) was higher than that using the Meta database 

(18.51%). Thus, more unique proteins and DEPs could be identified using the Meta database. 

Fig. 4  Volcano plots of proteins identified in the P-deficient and P-rich soils using the Meta database (a) and 

Public database (b). The X-axis is the binary logarithms of the fold changes for the abundance of the same protein 

between the P-deficient and P-rich soils, and the Y-axis is the negative base 10 logarithms of adjusted p-value 

corresponding to the fold change. The vertical dotted line on the right indicates the fold change is 2, and the 

vertical dotted line on the left indicates that the fold change is 1/2. The horizontal dotted line indicates that the 

adjusted p-value is 0.05. Proteins with a fold change above 2 and adjusted p - value under 0.05 are proteins with 

up-regulated abundances. Proteins with fold change under 1/2 and adjusted p -value under 0.05 are proteins with 

down-regulated abundances. 

 

More microbial species and functional annotations were obtained using the Meta database 

Among the proteins identified using the Meta database, 18 386 proteins (98.39%) were from 

bacteria, while only 219 and 82 proteins were from archaea and fungi, respectively. Similarly, 4 191 

proteins (97.85%) identified using the Public database were from bacteria, and only 40 and 52 proteins 

were from archaea and fungi, respectively (Table S4). Thus, regardless of the database used, majority 

of the identified proteins were from bacteria. A few proteins identified were from fungi and archaea, 

probably due to the low percentages of proteins from fungi and archaea in two databases. Protein 

sequences from bacteria (99.76% in the Meta database and 92.57% in the Public database) are the 

dominant component in both databases. 



The differences of microbial taxonomies for identified proteins and their Peptide-Spectrum Match 

(PSMs) obtained using the two databases were displayed at the genus level (Fig. 5 and Table S4). The 

number of genera identified using the Meta database was 854 genera in total using the annotation from 

ghostKOALA, and was almost 1.5-folds more than identified using the Public database (579 genera). 

A total of 327 genera could only be identified using the Meta database (Fig. 5a). Majority of the genera 

(91%) identified by the Public database could also be identified by the Meta database. Similarly, much 

more genera could be identified using the Meta database for each kind of soil. Thus, the Meta database 

could identify more microbial species than the Public database, which was beneficial to study the 

biodiversity of the microbial community. The PSMs for the genera identified by the Meta database were 

much higher than those identified by the Public database. Notably, the common genera identified by 

the Meta database had a much higher median (220) than others. It should be noted that the distributions 

of PSMs were significantly different between the common genera and unique genera identified by the 

two databases (Fig. 5c, d). The medians of PSMs for unique genera were much lower. The median was 

12 for the PSMs identified by the Meta database, and 8 for those identified by the Public database. It 

was suggested that credible shared genera with high PSMs could be identified by both databases, and 

more specific genera with low PSMs could be identified by the Meta database. 

Fig. 5  Differences of microbial taxonomies of identified proteins interpreted by ghostKOALA website at the 

genus level, and their corresponding PSMs using the two different databases. Venn diagram of the microbial 

taxonomies in total (a) and P-rich and P-deficient soils using the Meta database (M) and Public database (P) (b). 

The distribution of PSMs of genera identified by the Meta database (c) and Public database (d). Common genera 

mean the genera could be identified by both databases, and unique genera mean the genera could only be identified 

by the Meta database or Public database. The asterisks on the top mean the extremely significant difference (p < 

0.0001) between the two combinations obtained by Wilcoxon tests. 

 

The abundances of the microbial taxonomies for identified proteins at the genus level using the 

Meta database were higher than those identified using the Public database. However, the microbial 

taxonomies and their proportions of the most abundant microbial taxonomies using the two databases 

were similar (Fig. 6a and Table S5). Among the top ten most abundant microbial taxonomies, nine of 

them were the same. Rhodoplanes and Bradyrhizobium were the most abundant microorganisms 

identified in the P-rich and P-deficient soils, regardless of the used database and the treatment of P 

fertilizer in soils. Besides, we analyzed the correlations of microbial abundance at the genus level 

identified by the two databases in P-rich and P-deficient soils (Fig. 6b, c). They both exhibited 

significantly high positive correlations (r = 0.92 and r = 0.89), indicating both databases could 

efficiently interpret the microbial taxonomies for identified proteins. Thus, the used protein sequence 

database did not change the results of the elemental composition of the microbial community at the 

genus level. 

Fig. 6  The proportions (a) of the most abundant ten species of proteins identified in the P-rich and P-deficient 

soils using the two databases at the genus level. The correlation of the microbial abundance at the genus level 

identified using the two databases in P-rich soils (b) and P-deficient soils (c). 

 

Similar results of GO enrichment about biological progress and molecular function obtained using the 

two databases 

The identified proteins were matched to sequences in the NCBI nr database by BLAST alignment 

for GO and KEGG annotations (Fig. 7 and Table S6). Using the Meta database, 18 706 proteins could 

be matched to sequences in the NCBI nr database by BLAST, 13 023, and 7 813 proteins could obtain 

GO annotations and KEGG annotations, respectively. Meanwhile, all proteins could be matched to 

sequences in the NCBI nr database by BLAST alignment, 3 184, and 2 438 proteins can obtain GO 

annotations and KEGG annotations using Public database. These annotations were only 23%, 41%, and 

31% of the annotations obtained using the Meta database. However, compared with the total identified 

protein groups, a higher proportion of proteins could get GO and KEGG annotations using the Public 

database, probably due to the more detailed annotation of proteins from the Public database. However, 

the distributions of functions of the identified proteins on a comparably deep level (level 3 of KEGG) 

using the two databases were similar (Fig. S4 a). Correlations of KEGG annotations at the level 2 and 

level 3 identified by the two databases are also extremely high in P-rich soils (Fig. S4 b and Fig. S5 a) 

and P-deficient soils (Fig. S4 c and Fig. S5 b). This indicates that the two databases produced similar 

protein function analyses. 



Fig. 7  The number of the blast alignments, GO and KEGG annotations of the proteins identified using the two 

databases. 

 

The GO enrichment analysis about biological progress (BP) and molecular function (MF) for the 

up-regulated proteins in response to P deficiency was demonstrated using proteins identified by the two 

databases (Fig. 8 and Table S7). Despite the considerable variances in the amounts of proteins identified 

using the two databases, the GO enrichment results in biological progress and molecular function of the 

up-regulated proteins were remarkably similar. Furthermore, the proteins using the two databases were 

both mainly involved in various transport processes, including the phosphate ion transport, inorganic 

anion transport, ion transmembrane transport, phosphate ion transmembrane transport (Fig. 8a). These 

results were also similar to those results from the original paper (Yao et al., 2018). 

Fig. 8  The GO enrichment about the biological progress (a) and molecular function (b) based on the up-regulated 

proteins in response to P deficiency identified using the two databases. The adjusted P-values of GO terms in the 

plot are under 0.05, and the size of the points indicates the number of proteins. The ratio means the proportion of 

the up-regulated proteins in all identified proteins with the same GO term. 

 

Nevertheless, there were still some subtle differences. The processes related to ion transport, anion 

transport, and transmembrane transport were only enriched using the Public database. Nonetheless, 

these did not affect the main results that many transporting activities related to P acquisition were 

greatly enhanced under P-deficiency stress. However, the much deeper measurement using the Meta 

database provided higher confidence than the Public database in the membership population of the GO 

enrichments. 

GO enrichment in MF also got similar results using the two databases (Fig. 8b). The enriched up-

regulated proteins' MF was mainly related to phosphate ion binding, phosphoric ester hydrolase activity, 

phospholipase activity, and the acid phosphatase activity. These proteins were involved in P acquisition 

and cycling, an adaptation to P stress. Also, some differences existed using the two databases. Four 

more MF annotations were enriched using the Public database, including lipase activity, hydrolase 

activity, phosphatidylcholine phospholipase C activity, and anion binding. Thus, more BP and MF 

annotations were enriched using the Public database, which was not enriched using the Meta database. 

However, the main significant changes in the biological progress and molecular function between the 

two kinds of soil could be obtained using either database. 

Similar functional microorganisms were obtained using the two databases 

Phosphatases and phospholipases are necessary functional enzymes in response to P deficiency in 

soils (Yao et al., 2018). The identified phosphatases and phospholipases obtained by the two databases 

were used for constructing the phylogenetic trees, respectively (Fig. 9), to assess the influences of 

databases on exploring the corresponding key functional microorganisms. A total of 28 phosphatases 

and 30 phospholipases were identified using the two databases. About half of enzymes (14 phosphatases 

and 17 phospholipases) were from the proteins identified using the Public database, and the others were 

from the Meta database. Although more proteins were matched using the Meta database, the numbers 

of these two critical functional enzymes identified using the two databases were almost the same. The 

phosphatases identified could be divided into two main branches, representing the alkaline phosphatase 

(AL) and acid phosphatase (AC), respectively (Fig. 9). It showed that the majority of subbranches 

contained proteins identified using the two databases. The proteins clustered together shared the highly 

conserved motifs. The amino acid similarities of the identified motifs using the two databases were 

extremely high. Among 17 ALs, ten ALs were identified using the Meta database. The ALs were mainly 

from Alphaproteobacteria bacterium (5) and Candidatus rokubacteria (2). Moreover, these ALs from 

these bacteria could also be identified using the Public database, because Pseudolabrys taiwanensis and 

Methylobacterium sp. belong to Alphaproteobacteria. Cyanobacteria bacterium could only be 

identified using the Meta database, while AL from Frankia sp. could only be identified using the Public 

database. For the ACs, most of the microorganisms identified using the two databases belongs to the 

Betaproteobacteria, although the microorganisms identified at the family or the species levels had 

differences. The phylogenetic tree of phospholipases could also be divided into two main branches, 

representing the phospholipase (Branch I) and acid phospholipase (Branch II), respectively (Fig. S6). 

Most of the microorganisms identified using the two databases belonged to the Betaproteobacteria and 

Actinobacteria. 

Fig. 9  Phylogenetic trees and the sequence alignment of the representative conserved motifs of alkaline 

phosphatase (AL) acid phosphatase (AC) identified using Meta database (M, red) and Public database (P, blue). 



The protein identification number in the Meta database and accession number from the Public database were 

showed in brackets. The same conserved motifs were showed in the same color boxes. The multiple sequence 

alignments are motif 1 and motif 4 from branches I and II of the phylogenetic tree, respectively. The amino acid 

similarity higher than 70% showed below the sequences. 

 

Nevertheless, for acid phospholipases, the microorganisms identified using the Public database 

were much more specific than those identified using the Meta database. However, it should be noticed 

that the cross-species identifications may cause more specific taxonomic interpretation by the Public 

database for the high amino acid similarity between closely related species, or horizontal gene transfer 

between species. In summary, the main functional microorganisms identified using the two databases 

were similar, which was not affected by the different databases used. 

 

DISCUSSION 

Soil metaproteomics has been applied increasingly, analyzing the soil microbial functions with the 

development of soil protein extraction methods and mass spectrometry technology in recent ten years. 

However, bioinformatic analyses for complex and unknown microbial communities are still confusing 

and poorly studied. This study thoroughly and systematically demonstrated the soil metaproteomic 

workflow and results using the two protein sequence databases, the Meta database and the Public 

database. It was evident that more proteins and microbial taxonomies could be identified using the Meta 

database in soil metaproteomics. However, the primary metaproteomic results could also be obtained 

using the Public database, getting a rough overview of function and taxonomy quickly. This study 

provides a reliable basis for database selection in future soil metaproteomics. 

The total number of proteins in the two protein sequence databases used in this study were similar, 

and the total lengths of proteins were even longer in the Public database, but the amount of the identified 

proteins had vast differences. The Meta database usage acquired much more and better results with 

more identified proteins, higher coverages of protein sequences, and more microorganisms at the genus 

level compared with those obtained using the Public database. Thus, soil metagenomics provides a more 

special and detailed overview of uncultured soil microbes' genomes and customized protein sequence 

databases for soil metaproteomics (Nesme et al., 2016). The Meta database derives from the soil 

microorganisms in situ, and the specificity and coverage are higher than the commonly used Public 

databases, which may be critical to the more identified proteins. It was verified that more proteins 

identified by the Meta database could not be aligned to the proteins identified by the Public database, 

which also reflected the complexity and specificity of soil microbial communities. 

Furthermore, we can get more functional annotations, more specific proteins from distinctive 

microorganisms living in soil environments corresponding to current research by the Meta database. It 

is more conducive to subsequent data mining and phenomenon interpretation. In recent years, 

integrated-omics studies have been widely used in studies of the soil microbial communities and 

functions in diverse ecosystems (Johnson-Rollings et al., 2014; Hultman et al., 2015; Butterfield et al., 

2016; Yao et al., 2018). Soil proteogenomics could display an accurate and comprehensive picture of 

soil microbial communities and functions at the gene and protein level. 

The GO enrichment analysis was necessary for exploring the key processes or functions induced 

by environmental factors. It is worth noting that the use of protein sequences related to soil microbes 

from the Public database lead to similar soil metaproteomic results about the cluster analysis of the 

different samples, microbial community composition at the genus level, and the enrichment analysis of 

GO annotations of proteins and functional microorganisms. However, it saved the expenses of 

metagenomics. Even though the cost of genomic sequencing is getting lower, researchers should pay 

high efforts on the soil metagenomes, including extraction, amplification, sequencing, binning, and 

annotation. Nevertheless, in soil metagenomics analysis, all soil microbial microorganisms' complete 

coverage is almost impossible for soil's complicated composition. Inevitably, some microorganisms are 

missed in the process of experiments. Sometimes, the measurements even dramatically differed from 

the truth, for these experiments are biased toward detecting some taxa over others (McLaren and 

Callahan, 2018; McLaren et al., 2019). These resulted in unidentified spectra, even some high-quality 

or high-abundant ones. So, it is still challenging to assemble and annotate soil metagenomes accurately. 

With the cost reduction of sequencing and the going-deep researches, more and more microorganism 

genomes are well annotated. The datasets can be easily accessed and are well-curated. Thus, for the 

limit of the fund or laboratory conditions or the aim of analyzing the microbial responses in differently 

treated soils, the Public database could be a high-efficient and low-cost alternative. 

In metaproteomic researches about previously uncharacterized and complex environments such as 

the marine microbial community, different database construction approaches lead to divergent 

taxonomic and functional interpretations (Timmins-Schiffman et al., 2017). Some researchers prefer 



databases built by assembling metagenome than public databases because the metaproteome-specific 

database excludes non-specific sequences and yields a greater variety of taxa and functional annotations. 

While in most cases, the soil metagenomes are in quite poor quality and highly fragmented, and the taxa 

assignments are often dismal. Our results point out the similar microbial composition and functional 

change trend can be obtained by these two kinds of databases. The selection of databases and 

downstream data interpretation should be executed with care according to sample types and research 

purposes. 

Expect the above two kinds of databases, integration of two databases purposefully is probably a 

good strategy. Using the data from previous gut microbiota metaproteomics (Tanca et al., 2016), a 

merged database was deployed, including taxonomy-guided reference protein sequences from public 

databases and proteins from metagenome assembly (Xiao et al., 2018). Compared with the 

metagenomic database, about two-folds peptides could be identified using the merged database with 

high sensitivity and peptide identification precision. More proteins from poorly characterized species 

within the gut microbiota could be detected. In human intestinal metaproteomics, the protein sequence 

database from a wide range of expected protein in fecal samples and several above databases' subsets 

was tested (Muth et al., 2015). The integration of orthogonal information from other research fields 

such as metagenomics and 16S rRNA sequencing increased the metaproteomic results' confidence. In 

soil metaproteomics, this strategy was used to analyze microbial communities from the permafrost, 

active layer, and thermokarst bog soil by multi-omics technology (Hultman et al., 2015). The matched 

metagenomic assembly, microbial genomes of 180 environmental isolates, and 13 recently sequenced 

isolates from cold environments were also used as the protein sequence database. Approximately 7 000 

proteins were identified in this study. The environmental isolates increased the specificity of the 

database, especially the isolates from cold environments. Therefore, the combination of protein 

sequences from metagenomic assembly and genomes of environmental isolates from public databases 

may increase the integrity and specificity of the reference protein database in soil proteomics. 

 

CONCLUSIONS 

In this study, we used two strategies to construct protein sequence databases with comparable 

distribution in their protein lengths in soil metaproteomics, and demonstrated similarities and 

differences of their downstream bioinformatic analysis results using two kinds of databases. Using the 

Meta database, more proteins, higher sequences coverages, and even more microbial taxonomies could 

be identified. The Meta database showed some superiority over the Public database in soil 

metaproteomics. However, regardless of databases used, the enrichment analysis of GO terms with 

differential abundance identified exhibited high similarity, independent from the number of identified 

proteins, which means the Public database could also meet the demand to explore the functional 

responses of microbial proteins between soils with different treatments. This study provides useful 

insights into choosing the protein sequence database and how to perform bioinformatic analyses in soil 

metaproteomic analyses. 
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