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ABSTRACT
Visible near-infrared (vis-NIR) and portable X-ray fluorescence (pXRF) spectrometers have been increasingly utilized for predicting soil properties

worldwide. However, only a few studies have focused on splitting the predictive models by horizons to evaluate prediction performance and systematically
compare prediction performance for A, B, and combined A+B horizons. Therefore, we investigated the performance of pXRF and vis-NIR spectra, as
individual or combined, for predicting the clay, silt, sand, total carbon (TC), and pH of soils developed in loess, and compared their prediction performance for
A, B, and A+B horizons. Soil samples (176 in A horizon and 172 in B horizon) were taken from Mollisols and Alfisols in 136 pedons in Wisconsin, USA and
analyzed for clay, silt, sand, pH, and TC. The pXRF and vis-NIR spectrometers were used to measure the pXRF and vis-NIR soil spectra. Data were separated
into calibration (n = 244, 70%) and validation (n = 104, 30%) datasets. The Savitzky-Golay filter was applied to preprocess the pXRF and vis-NIR spectra,
and the first 10 principal components (PCs) were selected through principal component analysis (PCA). Five types of predictor, i.e., PCs from vis-NIR
spectra, pXRF of beams at 0–40 and 0–10 keV (XRF40 and XRF10, respectively) spectra, combined XRF40 and XRF10 (XRF40+XRF10) spectra, and
combined XRF40, XRF10, and vis-NIR (XRF40+XRF10+vis-NIR) spectra, were compared to predict soil properties using a machine learning algorithm
(Cubist model). A multiple linear regression (MLR) model was applied to predict clay, silt, sand, pH, and TC using pXRF elements. The results suggested that
pXRF spectra had better prediction performance for clay, silt, and sand, whereas vis-NIR spectra produced better TC and pH predictions. The best prediction
performances for sand (R2 = 0.97), silt (R2 = 0.95), and clay (R2 = 0.84) were achieved using vis-NIR+XRF40+XRF10 spectra in B horizon, whereas the
best prediction performance for TC (R2 = 0.93) and pH (R2 = 0.79) were achieved using vis-NIR+XRF40+XRF10 spectra in A+B horizon. For all soil
properties, the best MLR model had a lower prediction accuracy than the Cubist model. It was concluded that pXRF and vis-NIR spectra can be successfully
applied for predicting clay, silt, sand, pH, and TC with high accuracy for soils developed in loess, and that spectral models should be developed for different
horizons to achieve high prediction accuracy.
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INTRODUCTION

Proximal soil sensing techniques have been widely used
to provide information on soils. Visible near-infrared (vis-
NIR) and portable X-ray fluorescence (pXRF) spectra have
been used as rapid, environment-friendly, and low-cost tech-
niques to measure or predict soil properties with high accu-
racy, and in a non-destructive way compared to traditional
chemical methods (Taylor et al., 2004; Waiser et al., 2007;
Rossel et al., 2010, 2011; Rouillon and Taylor, 2016). Vis-
NIR and pXRF spectrometers have been increasingly utilized
for the prediction or estimation of soil types and properties
and for environmental monitoring (Rossel et al., 2009; Wein-
dorf et al., 2012; Hartemink and Minasny, 2014; Sharma
et al., 2014; Stockmann et al., 2016; Duda et al., 2017;
Tümsava et al., 2019; Benedet et al., 2020).

To date, vis-NIR spectra of soils have been increasingly
used to predict soil texture (clay, silt, and sand) (Waiser et al.,

2007; Rossel et al., 2009; Tümsava et al., 2019; Zhang and
Hartemink, 2020), soil organic carbon (SOC) (Gomez et al.,
2008), total carbon (TC) (Wang et al., 2015; Cardelli et al.,
2017; Zhang and Hartemink, 2020), carbonate, soil moisture
(Yost and Hartemink, 2019), cation exchange capability
(CEC), pH (Ben-Dor and Banin, 1995; Stockmann et al.,
2016), soil aggregate stability, and aggregate size distribution
(Shi et al., 2020) by means of the relationships between
reflectance spectra in the range of 350 to 2 500 nm and soil
properties (Duda et al., 2017; Rawal et al., 2019; Zhang and
Hartemink, 2019). The pXRF spectrometer identifies and
measures multiple elements using different energy spectra
of X-ray (Weindorf et al., 2014). Additionally, pXRF has
been used to predict TC (Zhang and Hartemink, 2020), SOC
(Gomez et al., 2008), CEC (Sharma et al., 2015), and soil
texture (Zhu et al., 2011; Silva, 2020; Zhang and Hartemink
et al., 2020). Recently, vis-NIR and pXRF spectral data
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from different sensors have been increasingly combined with
machine learning algorithms to predict soil properties, such
as TC and total nitrogen (TN) (Wang et al., 2015; Zhang
and Hartemink, 2019), soil texture (Zhang and Hartemink,
2019), pH (O’Rourke et al., 2016b; Zhang and Hartemink,
2019), CEC (O’Rourke et al., 2016b; Wan et al., 2020),
elements (O’Rourke et al., 2016a), and heavy metal pollution
(Hu et al., 2017; Xu et al., 2019). The vis-NIR spectra
provide more information on soil organic materials, whereas
the pXRF spectrometer provides more information on soil
mineral components (O’Rourke et al., 2016a, b; Zhang
and Hartemink, 2019). According to the results of these
researchers, using combined vis-NIR and pXRF spectral
data leads to increased soil property prediction accuracy.

Prediction performance for soil properties is influenced
by land use and soil management practices (Mancini et al.,
2019; Andrade et al., 2020a), different ranges of the dataset
(Santana et al., 2018; Zhang and Hartemink, 2019), soil
chemical properties, soil types (Benedet et al., 2020), soil
depths (Mancini et al., 2019; Silva et al., 2020), soil horizons
(Mancini et al., 2019; Andrade et al., 2020b; Benedet
et al., 2020) or soil diagnostic superficial horizons (Dos
Santos et al., 2014), and mineralogical properties (Andrade
et al., 2020a). To date, very few studies have investigated
the splitting of predictive models by horizon (combined
and separately) to achieve high prediction performance for
predicting soil properties using individual pXRF (Mancini
et al., 2019; Andrade et al., 2020b; Silva et al., 2020b)
and vis-NIR or combined pXRF and vis-NIR data (Benedet
et al., 2020) with machine learning algorithms. Additionally,
only a few studies have investigated splitting the predictive
models by horizon to achieve high prediction performance
and systematically compare the prediction performance of
A, B, and A+B horizons (Mancini et al., 2019; Andrade
et al., 2020b; Benedet et al., 2020).

Therefore, the objectives of this study were: 1) to in-
vestigate the performance of pXRF and vis-NIR spectra,
individually or combined, in predicting the clay, silt, sand,
TC, and pH of soils developed in loess, and 2) to compare
their prediction performance for A, B, and combined A+B
horizons. We hypothesize that combining pXRF and vis-NIR
spectra will achieve better prediction performance than either
alone, and that splitting the predictive models by horizon (A
or B) will provide better prediction performance for some
soil properties than when horizons combined (A+B).

MATERIALS AND METHODS

Soil sampling and analysis

The study was conducted in the Driftless Area, Dane
County, Wisconsin, USA. The study area was approximately

7 000 ha and was mainly agricultural land, with maize, soy-
bean, and alfalfa as themost prevalent field crops. The climate
in this region is characterized by warm, moist summer and
cold, dry winter. The mean annual precipitation and mean
annual temperature are 857 mm and 7.3 ◦C, respectively.
Loess materials cover much of the landscape in the study
area. The soils were described and sampled in 136 pedons
along 15 catenas in the study area. The catenas were selected
depending on the aspect and slope of the study area. The
detailed distribution of the selected catenas and pedons can
be found in Evans and Hartemink (2014a, b). In this study,
22 pedons were classified as Alfisols and 114 pedons as Mol-
lisols (Soil Survey Staff, 2014). A 7-cm Edelman auger was
used to sample the soil profiles. A total of 348 soil samples
were taken from the 136 pedons, including 176 samples from
A horizon and 172 samples from B horizon. The A horizon
consisted of Ap, Ap1, Ap2, A1, A2, and A3 horizons, while
B horizon consisted of B1, Bt1, Bt2, Bt3, Bt4, Bt5, Btg, and
Bw horizons. The thickness of A horizon varied from 6 to
70 cm, while the thickness of B horizon varied from 5 to
90 cm. Soil samples were collected from the center of each
horizon. The soils in the A and B horizons were developed
from the loess material.

All the soil samples collected were air-dried, sieved using
a 2-mm sieve, and analyzed for soil physical and chemical
properties. Soil texture was analyzed using the hydrometer
method (Gee and Bauder, 1979). Soil pH was determined
using a pHmeter (510 Series, OAKTON Instruments, Vernon
Hills, USA)with a glass electrode in 1:1 (weight:volume) soil
water solutions (Soil Survey Staff, 2014). TC was measured
using the dry combustion method (Flash EA 1112 series
NC, Thermo Electron Corporation, USA) (Soil Survey Staff,
2014).

Vis-NIR and pXRF analyses

Approximately 50 g ground (< 2 mm) soil was placed
in a plastic weighing boat and slightly pressed for a uniform
and flat surface before vis-NIR and pXRF measurements.
The spectra of the 348 soil samples were measured using a
vis-NIR spectrometer (Spectral Evolution, Lawrence, USA)
with a spectral range of 350 to 2 500 nm. The vis-NIR
spectrometer was fitted with a contact probe and a fiber-
optic cable, along with an integrated 5 W halogen light
source to emit and capture light from the sample surface.
The spectral resolutions of the vis-NIR spectrometer were
3 nm between 350 and 1 000 nm, 8 nm between 1 000 and
1 900 nm, and 6 nm between 1 900 and 2 500 nm. At the
end of spectral measurement, each spectral reflectance was
exported at 1 nm intervals, which resulted in 2 151 spectral
points. After scanning every ten soil samples, a white plate
made from polytetrafluoroethylene was used to calibrate the
vis-NIR spectrometer. The mean spectral reflectance was
calculated from three replicates for each soil sample. The
mean vis-NIR spectra of soil samples from A, B, and A+B
horizons are shown in Fig. 1.
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Fig. 1 Mean spectra of visible near-infrared (vis-NIR) and portable X-ray
fluorescence (pXRF) of beams at 0–40 (XRF40) and 0–10 keV (XRF10) of
soils, developed from loess material, in A, B, and A+B horizons.

The same setup was used for measurement with a pXRF
spectrometer (Delta Premium, Olympus Scientific Solutions
Americas Inc., Waltham, USA) in Geochem Mode, which
runs for a duration of 60 s in a two-beam configuration: beam
1 at 0–40 keV and beam 2 at 0–10 keV. Before measure-
ments, 316 stainless steel was used to calibrate the pXRF
spectrometer. The pXRF spectra were used to obtain el-
emental concentrations according to an internal Compton
normalization method. Some elements had low concentra-
tions in the soil samples and were not detected using the
pXRF spectrometer. The concentrations of elements (Zr, Sr,
Rb, Zn, Mn, Ti, Ca, Si, Fe, Al, and Mg) were measured for
all soil samples. The spectrum of beam 1 (0–40 keV) had
2048 spectral points and the spectrum of beam 2 (0–10 keV)
had 512 spectral points. Fig. 1 shows the mean pXRF spectra
of beam 1 (XRF40) and beam 2 (XRF10) of soil samples
from A, B, and A+B horizons.

Vis-NIR and pXRF spectra preprocessing

The vis-NIR spectra were preprocessed as follows: i) all

spectral reflectances were converted to absorbance spectra;
ii) Savitzky-Golay filter with a window size of 11 nm and
a polynomial order of 2 was applied to smooth the spectra.
The Savitzky-Golay filter matches a specific polynomial
regression on the signal with defined polynomial order and
window size (Savitzky and Golay, 1964); iii) the spectral
ranges from 350 to 500 nm and 2 450 to 2 500 nm were
deleted to remove noise, and every 10 th spectrum ranging
from 500 to 2 450 nm was chosen to minimize high di-
mensionality and collinearity (Zhang and Hartemink, 2019;
Benedet et al., 2020; Wan et al., 2020); and iv) the standard
normal variate transformation was applied to normalize the
spectra (Barnes et al., 1989). R version 3.4.3 software was
used for these processes (R Core Team, 2016).

The Savitzky-Golay filter was used to smooth both
XRF40 and XRF10 spectra, with window sizes of 11 and
7 nm, respectively, and a polynomial order of 2 in R version
3.4.3 software, using the Savitzky-Golay function in the
prospectr package (Stevens et al., 2013). The Savitzky-Golay
filter was suggested for preprocessing the pXRF spectra by
other studies (O’Rourke et al., 2016b; Xu et al., 2019; Zhang
and Hartemink, 2019).

The processed vis-NIR and pXRF (XRF40 and XRF10)
spectrawere individually scaled to one standard deviation and
zero mean, and then a principal component analysis (PCA)
was applied to select the first 10 principal components (PCs)
for each type of spectrum. The PCA analysis was undertaken
using the prcomp function in R version 3.4.3. Five types
of predictor were compared for predicting soil properties:
i) 10 PCs from vis-NIR spectra, ii) 10 PCs from XRF40
spectra, iii) 10 PCs fromXRF10 spectra, iv) concatenating 20
PCs from combined XRF40 and XRF10 (XRF40+XRF10)
spectra, and v) concatenating 30 PCs from combined XRF40,
XRF10, and vis-NIR (XRF40+XRF10+vis-NIR) spectra.

Predictive models

The 348 soil samples collected from A and B horizons
were randomly separated into a calibration (n = 244, 70%)
and a validation (n = 104, 30%) dataset using the sample
function in R version 3.4.3. The calibration dataset con-
tained 123 samples from A horizon and 121 samples from
B horizon, and the validation dataset contained 53 samples
from A horizon and 51 samples from B horizon. The Cubist
model was applied to predict clay, silt, sand, TC, and pH
from different combinations of PCs of soil spectra. The
Cubist model is a rule-based method derived from Quinlan’s
M5 model tree (Quinlan, 1992), in which each tree branch is
built on a linear regression model instead of a discrete value
(Minasny and McBratney, 2008). Other models (including
multiple linear regression, random forest, and partial least
square regression) were briefly compared with the Cubist
model, and the results did not show any superiority over
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the Cubist model (data not shown). The Cubist model was
developed using the train function of caret package (Kuhn,
2008) in R version 3.4.3. A 10-fold cross validation was
applied to the calibration dataset to prevent overfitting in the
train function. In the cross validation, parameters including
committees (1, 10, and 20) and neighbors (0, 5, and 9) were
tested for the Cubist model. The final model with specific
committee and neighbor was chosen based on the lowest root
mean squared error (RMSE) value. The validation dataset
was individually checked for the Cubist model. The coeffi-
cient of determination (R2), RMSE, and residual prediction
deviation (RPD) were determined for the training process
and independent validation (Chang et al., 2001).

A multiple linear regression (MLR) model was applied
to predict clay, silt, sand, TC, and pH directly from important
geochemical elemental concentrations (Zr, Sr, Rb, Zn, Mn,
Ti, Ca, Si, Fe, Al, and Mg). Different combinations of
the elemental variables were used in the MLR models to
select the optimal MLR model with the highest R2 value
with certain elements. An exhaustive search of the optimal
MLR model was conducted on the calibration dataset via
the RegBest function of FactoMineR package (Husson et al.,
2018) in R version 3.4.3. The optimal MLR model was then
evaluated using the independent validation dataset. The R2,
RMSE, and RPD were determined for both the calibration
and validation processes.

For each soil property (clay, sand, silt, TC, and pH)
and different combinations of pXRF and vis-NIR spectral
data, prediction models (Cubist and MLR) were evaluated
for various datasets: i) A horizon, ii) B horizon, and iii)
combined A+B horizon.

RESULTS

Characterization of soil horizons

The distributions of soil particle size fractions (clay, silt,
and sand), TC, pH, and elements of the 348 soil samples are
shown in Fig. 2 for A, B, and A+B horizons. The A horizon
had an average of 12% sand, 66% silt, and 22% clay. The
Bt horizon had an average of 15% sand, 58% silt, and 27%
clay. In the soil profiles, clay, Mg, Al, Fe, and Sr increased
from A to Bt horizon, whereas TC, TN, pH, Ca, Mn, and Zn
noticeably decreased from A to Bt horizon. The soil samples
had higher concentrations of Al, Mg, Fe, Ca, and Si and
lower concentrations of Mn, Ti, Rb, Zn, Zr, and Sr. The B
horizon had noticeably higher coefficients of variation (CV)
than A horizon for pH, TC, silt, Mg, Al, Ca, Ti, Zn, Mn, Rb,
Zr, and Sr. In particular, TC, Ca, and Mn had very high CV
values in B horizon (Table I). The distributions of clay, silt,
sand, TC, and pH values in A+B horizon of the calibration
and validation datasets are shown as histograms in Fig. 3.

Clay, silt, sand, pH, and TC had similar distributions in the
calibration and validation datasets.

The Pearson correlation coefficients (r) between soil
properties and elements in A, B, and A+B horizons are
shown in Fig. 4. As expected, sand content was strongly
negatively correlated with Al, Ti, Rb, Sr, and Zr in A, B, and
A+B horizons, whereas silt and clay contents were strongly
positively correlated with Fe, Al, Ti, Rb, Sr, and Zr in A,
B, and A+B horizons. In particular, sand and silt contents
showed strong correlation with soil elements such as Fe,
Al, Ti, Rb, Sr, and Zr in each horizon. Generally, strong
correlations were observed between soil properties (clay,
sand, silt, TC, and pH) and elements (Fe, Al, Ca, Ti, Rb, Sr,
and Zr) in A and B horizons. The correlations were weaker
between soil properties (pH and TC) and elements (Si, Fe,
Ca, Ti, Zr, and Zn) when the data for A and B horizons were
combined (Fig. 4).

Principal component analysis and spectral variance

The 10 PCs explained approximately 100% of the cu-
mulative variance in the vis-NIR spectra, and approximately
90% and 80% of the cumulative variance in the XRF10 and
XRF40 spectra, respectively (Table I). The loadings of the
first three principal components (PC1, PC2, and PC3) of
the PCA on vis-NIR, XRF10, and XRF40 spectra in the
validation dataset for A, B, and A+B horizons are shown in
Fig. 5. Valleys and peaks of the loadings showed important
features of vis-NIR, XRF10, and XRF40 spectra on the first
three PCs (Fig. 5). PC1 for the vis-NIR spectra explained
52% of the variance in A horizon and had strong positive
weightings (> 0.60) at 1 000–1 400 nm and strong negative
weightings (< −0.6) above 1 900 nm. PC2 for the vis-NIR
spectra explained 28% of the variance in A horizon and had
strong positive weightings at 550–600 and 1 450–1 880 nm
and strong negative weightings at 800–1 060 nm. PC3 for the
vis-NIR spectra explained 15% of the variance in A horizon,
and had strong positive weightings at 640 nm and strong
negative weightings at 1 400 nm, corresponding to the O–H
bonds in water molecules. The loading patterns of vis-NIR
spectra were very similar in A, B, and A+B horizons, ex-
cept that PC1 in B and A+B horizons had strong negative
weightings at 1 400 nm. The loading patterns of XRF10 and
XRF40 spectra showed more peaks and vibrations compared
to that of vis-NIR spectra (Fig. 5), because the raw XRF
spectra contained more abrupt peaks (Fig. 1). The XRF10
and XRF40 spectra had stronger positive weightings than
negative weightings. The loading patterns of XRF40 spectra
were very similar in A, B, and A+B horizons, in which
PC1 had broad positive weightings above 20 keV.

Soil property prediction performance with pXRF and vis-NIR
spectra

The calibration and validation results of different in-
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Fig. 2 Distributions of clay, sand, silt, total carbon (TC), pH, and elements (Mg, Al, Si, Fe, Ca, Ti, Mn, Zn, Rb, Sr, and Zr) of soils, developed from loess
material, in A, B, and A+B horizons. Each box shows the minimum (lower line end), 1 st quartile (Q1, lower box section), median (line within box), 3rd
quartile (Q3, upper box section), maximum (upper line end), and outliers (open circles). Interquartile range (IQR) = Q3 − Q1; minimum = Q1 − 1.5IQR;
maximum = Q1 + 1.5IQR.

put variables and at different horizons for predicting soil
properties with Cubist model are shown in Table SI (see
supplementary material for Table SI). The predictions of the
Cubist model using different input variables and spectral data
from A, B, and A+B horizons had high overall accuracy. The
prediction accuracy with the validation dataset was similar
to that with the calibration dataset, which indicated that there
was no overfitting issue in the Cubist model.

In general, soil clay, silt, and sand had higher prediction
accuracy in B horizon than in A or A+B horizon. The Cubist
model with XRF40 spectra had higher validation R2 values

for predicting soil particle size fractions (validation R2 =

0.79, 0.93, and 0.96 for clay, silt, and sand, respectively) than
that with XRF10 spectra (validation R2 = 0.79, 0.84, and
0.87 for clay, silt, and sand) in B horizon (Fig. 6). Combining
the two spectra (XRF40+XRF10) only slightly improved the
prediction performance for sand (validation R2 = 0.97), silt
(validation R2 = 0.94), and clay (validation R2 = 0.79)
over using XRF40 spectra in B horizon. The vis-NIR spectra
provided the better prediction performance for clay in A
horizon (validation R2 = 0.84) than in B (validation R2 =

0.42) and A+B horizons (validation R2 = 0.62). Combining
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TABLE I

Cumulative variance explained by the first 10 principal components (PCs) for visible-near infrared (vis-NIR) and portable X-ray fluorescence (pXRF) of
beams at 0–10 (XRF10) and 0–40 keV (XRF40) spectra of soils, developed from loess material, in A, B, and A+B horizons in the validation dataset

PC Vis-NIR XRF10 XRF40

A B A+B A B A+B A B A+B

%
1 52 68 66 43 36 43 54 57 53
2 80 85 87 69 69 64 63 66 63
3 95 93 96 77 77 74 69 70 68
4 98 97 98 83 81 80 72 73 71
5 99 98 99 85 84 83 73 74 72
6 99 99 99 87 85 85 75 76 74
7 100 100 100 89 87 87 76 77 74
8 100 100 100 90 88 88 77 78 75
9 100 100 100 91 89 89 78 79 76
10 100 100 100 92 90 89 79 80 77

Fig. 3 Histograms of clay, sand, silt, total carbon (TC), and pH of soils, developed from loess material, in A+B horizon in the calibration and validation
datasets.

XRF40+XRF10 and vis-NIR spectra slightly improved the
prediction performance for clay, silt, and sand in A, B, or
A+B horizon (Fig. 6).

The Cubist model for the prediction of TC in A+B hori-
zon generally had higher prediction accuracy than in the
individual A or B horizon. Using XRF40 spectra produced a
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Fig. 4 Pearson correlations between properties and elements of soils, developed from loess material, in A, B, and A+B horizons. Blue circles indicate
greater positive correlations, while filled red circles indicate greater negative correlations. The numbers in red open circles show correlation coefficient r >
0.5 or r 6 −0.5.

higher validationR2 (0.84) than using XRF10 spectra (0.81)
in A+B horizon. Combining the two pXRF (XRF40+XRF10)
spectra produced a better prediction for TC (validationR2 =

0.87) than using individual pXRF (XRF40 or XRF10) spectra
in A+B horizon. In particular, the use of vis-NIR spectra ge-
nerated higher prediction accuracy for TC (validation R2 =

0.91) in A+B horizon than the use of pXRF spectra. Combin-
ing vis-NIR,XRF40, andXRF10 (vis-NIR+XRF40+XRF10)
spectra made the best prediction for TC (validation R2 =

0.93) compared to using individual pXRF or vis-NIR spectra.
The prediction performances for pH in A, B, and A+B

horizons differed from those for other soil properties (clay,

silt, sand, and TC); the prediction accuracy was slightly lower
for pH. TheXRF40 and vis-NIR spectra had higher prediction
accuracy (validation R2 = 0.63 and 0.79, respectively) in
A horizon, whereas XRF10 and XRF40+XRF10 had higher
prediction accuracy (validation R2 = 0.69 and 0.66, respec-
tively) in B horizon. The vis-NIR+XRF40+XRF10 spectra
explained more variation than using individual XRF40 or
XRF10 spectra in relation to pH. In contrast to those for the
other soil properties, the highest prediction accuracy (vali-
dationR2 = 0.79) for pH was obtained when using only vis-
NIR spectra in A horizon, while using XRF40+XRF10+vis-
NIR spectra had the same prediction performance (validation
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Fig. 5 Loadings of the first three principal components (PC1, PC2, and PC3) of the principal component analysis on visible-near infrared (vis-NIR) and
portable X-ray fluorescence (pXRF) of beams at 0–10 (XRF10) and 0–40 keV (XRF40) spectra of soils, developed from loess material, in A, B, and A+B
horizons in the validation dataset.

R2 = 0.79) in A+B horizon (Fig. 6).
Considering the obtained results, the predictions of clay,

silt, and sand were better in B horizon, whereas the pre-
dictions of TC and pH were better in A+B horizon when
combining vis-NIR and pXRF spectra in the model. The
pXRF spectra performed better in predicting clay, sand, and
silt, whereas the vis-NIR spectra performed better in pre-
dicting TC and pH. Combining all the spectra improved the
prediction accuracy of most soil properties. The scatterplots
of the predicted and measured clay, silt, sand, TC, and pH in
these horizons are shown in Fig. 7.

Effect of chemical element selection on prediction
performance of soil properties

Table II shows the calibration and validation results of
the MLR models for predicting soil properties with pXRF
elements. Different pXRF elements with the highest overall

accuracy were used for A, B, and A+B horizons. It showed
that the elements were used successfully to predict the clay,
silt, sand, TC, and pH in A horizon. In particular, the
MLR models for clay, silt, sand, and pH had the highest
prediction accuracy (validation R2 = 0.81, 0.87, 0.94, and
0.53, respectively) in A horizon, whereas TC was predicted
most accurately (validation R2 = 0.87) in A+B horizon
(Table II). The Al, Ca, and Rb were used to predict almost
all clay, silt, sand, TC, and pH in individual A or B and
combined A+B horizons (Table II). The Al, Ca, Fe, Si, Zn,
Ti, Rb, Zr, and Sr were most important for predicting soil
particle size (clay, silt, and sand) in almost every horizon.
Sand was better predicted (validation R2 = 0.94) by MLR
with elements than the other soil properties (silt, validation
R2 = 0.87; clay, validationR2 = 0.81; TC, validationR2 =

0.81; and pH, validation R2 = 0.53). The Al, Ca, Zn, and Sr
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Fig. 6 Performance statistics of Cubist model validations set for five properties of soils, developed from loess material, in A, B, and A+B horizons using
spectral data of visible-near infrared (vis-NIR) and portable X-ray fluorescence (pXRF) of beams at 0–10 (XRF10) and 0–40 keV (XRF40). TC = total
carbon; R2 = coefficient of determination; RMSE = root mean squared error; RPD = residual prediction deviation.

were used to predict TC, whereas Mg, Al, Ca, Mn, and Zr
were used to predict pH in all horizons (Table II).

DISCUSSION

Model performance using pXRF and vis-NIR spectra for
prediction of soil properties

In our study, good results were obtained for predicting
clay, silt, sand, pH, and TC from vis-NIR and pXRF spectra.
The PCA+Cubist method predicted clay, silt, and sand from
vis-NIR spectra with good accuracy (validation R2 = 0.84,
0.60, and 0.71, respectively). Clay and sand were more
accurately predicted than silt, which may be due to the
special characteristics of clay (O–H in water, FeOH–, AlOH–
, and MgOH– in the structure of mineral crystal lattice) and
corresponding spectral features in the vis-NIR spectra (Ben-
Dor and Banin, 1995). Other studies have also reported
moderate to high prediction accuracy (R2 ranging from
0.42 to 0.83) for clay content using vis-NIR spectra (e.g., Ng
et al., 2019; Zhang and Hartemink, 2020) (Table III). Duda
et al. (2017) and Zhang and Hartemink (2020) observed

lower prediction accuracy for sand (validation R2 = 0.18
and 0.39, respectively) and silt contents (validation R2 =

0.41 and 0.53), whereas Tümsava et al. (2019) observed
high prediction accuracy (validation R2 = 0.82 and 0.91).
Rossel et al. (2009) related the low prediction accuracy for
clay and sand contents using the vis-NIR spectrometer to an
overlap of different effects that hide the absorption features
at 1 400 nm, due to the presence of FeOH– and/or AlOH–.
In addition, the prediction accuracy for clay, sand, and silt
differed for different horizons.

The predictionmodels for clay, silt, and sand using pXRF
spectra showed better performance than those using vis-NIR
spectra in our study. O’Rourke et al. (2016a) and Zhang
and Hartemink (2020) reported similar results. According to
Tóth et al. (2019) and Zhang and Hartemink (2020), pXRF
elements had higher correlations with clay, silt, and sand than
vis-NIR spectra. Additionally, when pXRF (XRF40+XRF10)
and vis-NIR spectra were applied together to predict clay,
silt, and sand, the prediction performance for clay was similar
to that of pXRF (XRF40+XRF10) alone. The combination of
pXRF and vis-NIR spectra was better than using individual



610 G. GOZUKARA et al.

Fig. 7 Scatterplots of measured and predicted properties of soils, developed from loess material, in the validation dataset. The soils were predicted using a
Cubist model with the spectra of the combined vis-NIR+XRF10+XRF40 as the input data. The solid line is the 1:1 line and the dotted line is the trend line.
The best predictions were obtained for clay, sand, and silt contents in B horizon and for total carbon (TC) and pH in A+B horizon. vis-NIR = visible-near
infrared; XRF10 = portable X-ray fluorescence (pXRF) of beams at 0–10 keV; XRF40 = pXRF of beams at 0–40 keV.

TABLE II

Calibration and validation resultsa) of multiple linear regression for predicting properties of soils, developed from loess material, in A, B, A+B horizons with
elemental concentrations

Soil property Horizon Elements Calibration Validation

R2 RMSE RPD R2 RMSE RPD

Clay A Al, Si, Ca, Rb, Zr 0.74 2.94 1.92 0.81 3.58 2.26
B Al, Si, Fe, Ca, Rb 0.65 3.28 1.66 0.74 2.65 1.96
A+B Al, Si, Fe, Ca, Mn, Zn, Rb, Zr 0.78 3.22 2.10 0.69 3.32 1.76

Sand A Al, Si, Fe, Zn, Rb, Sr, Zr 0.85 4.53 2.53 0.94 4.12 4.03
B Si, Fe, Ti, Zn, Rb, Sr, Zr 0.85 5.42 2.57 0.89 5.52 2.88
A+B Si, Fe, Ca, Ti, Mn, Rb, Sr, Zr 0.87 5.07 2.76 0.78 6.48 2.10

Silt A Al, Fe, Zn, Sr, Zr 0.84 5.25 2.45 0.87 5.41 2.76
B Al, Ca, Ti, Zn, Rb, Sr, Zr 0.85 5.04 2.54 0.86 4.76 2.64
A+B Mg, Al, Ca, Ti, Zn, Rb, Sr, Zr 0.84 5.48 2.50 0.81 5.89 2.22

TC A Al, Ca, Ti, Zn, Sr 0.82 0.64 2.29 0.56 0.68 1.47
B Al, Si, Ca, Ti, Mn, Zn, Sr 0.95 0.31 4.36 0.66 0.43 1.57
A+B Al, Fe, Ca, Mn, Zn, Rb, Sr 0.79 0.65 2.15 0.81 0.79 2.30

pH A Mg, Al, Si, Ca, Ti, Mn, Zr 0.57 0.42 1.49 0.53 0.48 1.47
B Mg, Al, Ca, Mn, Rb, Sr, Zr 0.55 0.58 1.45 0.44 0.63 1.33
A+B Mg, Al, Si, Ca, Mn, Rb, Sr, Zr 0.58 0.52 1.51 0.52 0.56 1.43

a)R2 = coefficient of determination; RMSE = root mean squared error; RPD = residual prediction deviation; TC = total carbon.
b)Data in bold show the best validation model.

vis-NIR spectra for prediction of clay content in B horizon,
while the prediction performance of combined pXRF and
vis-NIR spectra was worse than that of individual vis-NIR
spectra for clay content in A horizon. However, the prediction
performance of combined pXRF and vis-NIR spectra was
better than that of individual vis-NIR spectra for sand and
silt contents in every horizon. Several studies reported that
predictions of soil particle size (clay, silt, and sand) improved

when vis-NIR and pXRF spectra were combined (Table III)
(Duda et al., 2017; Zhang and Hartemink, 2020). In par-
ticular, Zhang and Hartemink (2020) predicted clay, sand,
and silt contents fairly well with a wide range of datasets.
However, they reported that prediction performance of clay,
sand, and silt contents was affected by textural classes. For
example, sandy loam, sandy clay loam, and clay loam soils
had better prediction than loam sandy soil.
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TABLE III

Summary of studies predicting soil properties using visible-near infrared (vis-NIR) spectra, portable X-ray fluorescence (pXRF) spectra, and pXRF elements

Modela) Input Validation coefficient of determination Reference

Clay Sand Silt Total C pH

PLSR Vis-NIR spectra – – – – 0.72 Zornoza et al. (2008)
0.67 0.44 – 0.54 0.66 Ng et al. (2019)

MLR pXRF elements 0.88, 0.98 0.85, 0.89 0.68, 0.88 – – Zhu et al. (2011)
RF pXRF spectra – – – 0.77 – Wang et al. (2015)

pXRF elements – – – 0.58 – Cardelli et al. (2017)
Vis-NIR spectra – – – 0.81 – Wang et al. (2015)

– – – 0.60 Cardelli et al. (2017)
Vis-NIR+pXRF spectra – – – 0.83 – Wang et al. (2015)

PSR Vis-NIR spectra – – – 0.90 – Wang et al. (2015)
PSR Vis-NIR+pXRF spectra – – – 0.93 – Wang et al. (2015)
Cubist pXRF spectra – – – – 0.42 O’Rourke et al. (2016a)

0.77 0.79 – 076 0.60 O’Rourke et al. (2016b)
Vis-NIR spectra – – – – 0.56 O’Rourke et al. (2016a)

0.86 0.35 – 0.38 0.75 O’Rourke et al. (2016b)
0.76 0.60 – 0.70 0.76 Ng et al. (2019)

ENET pXRF elements – – – 0.62 – Cardelli et al. (2017)
Vis-NIR spectra – – – 0.73 – Cardelli et al. (2017)

SVR Vis-NIR spectra 0.53 0.18 0.39 0.70 – Duda et al. (2017)
pXRF spectra 0.15 0.24 0.13 0.68 – Duda et al. (2017)
Vis-NIR+pXRF spectra 0.49 0.25 0.45 0.80 – Duda et al. (2017)

MLR pXRF elements 0.85 0.89 0.91 0.65 0.15 Zhang and Hartemink (2020)
PCA+Cubist pXRF spectra 0.86 0.90 0.92 0.61 0.12 Zhang and Hartemink (2020)

0.77 0.88 0.86 0.87 0.63 This studyb)
Vis-NIR spectra 0.62 0.60 0.60 0.91 0.77 This studyb)
Vis-NIR+pXRF spectra 0.79 0.90 0.87 0.93 0.79 This studyb)

a)PLSR = partial least square regression; MLR = multiple linear regression; RF = random forest; PSR = penalized spline regression; ENET = elastic net
regression; SVR = support vector regression; PCA = principal component analysis.
b)Data in this study are from the combined A+B horizon.

The PCA+Cubist method achieved good prediction of
TC using the vis-NIR spectrometer. In particular, TC was
predicted more accurately in A+B horizon (validation R2 =

0.91) than in A (validationR2 = 0.77) or B (validationR2 =

0.57) horizon. In general, organic matter, TC, and organic
carbon of soils have been quite well predicted using vis-
NIR spectra. For instance, some studies achieved fairly high
prediction accuracy (R2 = 0.61–0.90) for TC with vis-NIR
spectra (Duda et al., 2017; Zhang and Hartemink, 2020).
However, TC prediction had low accuracy (R2 = 0.38) using
vis-NIR spectra in O’Rourke et al. (2016a) (Table III). Soil
organic matter has high absorbance in some regions of the
vis-NIR spectra owing to the N–H, C–H, and C–O bonds
present, and can be better predicted using vis-NIR spectra
(Rossel and Webster, 2011). In our study, the XRF40 and
XRF10 spectra were less accurate in predicting TC than
vis-NIR spectra. Cardelli et al. (2017) (R2 = 0.58), Duda
et al. (2017) (R2 = 0.68), and Zhang and Hartemink (2020)
(R2 = 0.61) reported that the prediction accuracy for TCwas
similarly low using pXRF data (Table III). However, in our
study, when vis-NIR and pXRF (XRF40+XRF10) spectra
were applied together, the prediction accuracy of TC slightly
improved, with the validation R2 increasing from 0.91 (vis-
NIR) to 0.93 (vis-NIR+pXRF) in A+B horizon. Similar
improvement in prediction accuracy has been reported when

both vis-NIR and pXRF spectra were used (Duda et al.,
2017; Zhang and Hartemink, 2020).

In this study, pH prediction was less accurate than those
for other soil properties. The pH prediction was better in
A horizon when only vis-NIR spectra were used, while
combining pXRF (XRF40+XRF10) and vis-NIR spectra
produced similar prediction performance for pH in A+B
horizon. Soil pH was indirectly predicted by vis-NIR spectra
because of its strong correlations with other soil properties.
O’Rourke et al. (2016b) and Zhang and Hartemink (2020)
reported that pXRF and vis-NIR spectra were not enough
to accurately predict pH, whereas Sharma et al. (2014) and
Teixeira et al. (2018) reported that pH was predicted well
by pXRF spectra, with R2 of 0.77 and 0.85 (Table III),
because of its strong correlations with elemental data from
pXRF (e.g., Mn and Al). Zhang and Hartemink (2020)
obtained very low prediction performance for pH due to poor
correlations between pXRF elements/soil properties and
pH. However, in our study, moderate correlations between
soil properties (such as clay, sand, silt, Fe, and Ca) and pH
were observed. In addition, some elements from pXRF such
as Mg, Al, Ca, Mn, and Zr used in MLR were effectively
used to predict soil pH in every horizon (A, B, and A+B).
These results indicated that prediction performance of pH
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was affected by correlations between pXRF elements, soil
particle size, and pH.

According to Mancini et al. (2019), when elemental con-
centrations in A, B, and C horizons were predicted separately
from pXRF data, the prediction performances were diffe-
rent. They observed higher prediction accuracy in C horizon
than in A and B horizons due to several effects, including
land use (agricultural activities), soil management practices
(less human influence), and variation of soil properties in
the deep soil compared to surface and subsurface horizons.
Andrade et al. (2020a) reported that prediction models for
soil fertility performed better in A horizon than in B horizon
when pXRF and vis-NIR spectra were used, while Benedet
et al. (2020) reported that prediction models for some soil
properties of soil subgroup performed better in B horizon
than in A horizon when using pXRF spectra. However, An-
drade et al. (2020a) reported that the best prediction result
was obtained using pXRF spectra from combined A and
B horizon. Similarly, Santana et al. (2018) and Zhang and
Hartemink (2019) successfully used pXRF spectra, without
considering soil horizons, to improve model accuracy for
predicting soil properties. The parent material, weathering
state, and leaching rate of soil samples increased the varia-
tions in the physical and chemical composition during the
formation and pedogenetic processes (Zhu et al., 2011).

From a practical perspective, combining vis-NIR and
pXRF spectra produced better prediction performance for
clay, silt, sand, TC, and pH. In particular, higher prediction
accuracy for clay, sand, and silt was obtained in B horizon,
whereas better prediction performance for TC and pH was
obtained without considering soil horizons (A+B).

Assessment of model applicability

In this study, the model used was a simple method for
predicting clay, silt, sand, TC, and pH using combined pXRF
and vis-NIR spectral data with a machine learning algorithm
(Cubist model). The observations clearly showed that the
models using pXRF spectra had better prediction perfor-
mance than those using vis-NIR spectra for silt and sand, and
predicted soil particle size fractions (clay, silt, and sand) very
well (validation R2 = 0.79, 0.97, and 0.95, respectively) in
B horizon. When pXRF and vis-NIR spectra were combined,
prediction performance showed little improvement for soil
particle size fractions. The models using vis-NIR spectra
alone had better prediction performance for TC and pH
than those using pXRF spectra, and predicted TC and pH
very well (validation R2 = 0.91 and 0.79, respectively) in
A+B and A horizons. Combining pXRF and vis-NIR spectra
produced a small improvement in prediction for TC.

Prediction performance is affected not only by soil physi-
cal and chemical properties, but also by different features
such as environmental conditions, land use (Mancini et al.,

2019; Andrade et al., 2020a), soil types (Benedet et al.,
2020), accumulation-leaching (Andrade et al., 2020b), soil
depths (Mancini et al., 2019; Silva et al., 2020), soil di-
agnostic horizons (Dos Santos et al., 2014), mineralogical
properties (Andrade et al., 2020a), soil color, and diffe-
rent ranges of the dataset (Santana et al., 2018; Zhang and
Hartemink, 2019) from A, B, and A+B horizons. There-
fore, from a practical perspective, the performance of this
methodology should be applied and tested further in order to
develop models for soils that developed from different parent
materials, environmental conditions, and land uses.

CONCLUSIONS

The Cubist model was used with individual or combined
pXRF and vis-NIR spectra through a PCA to investigate
its performance in predicting clay, silt, sand, TC, and pH
in soils developed in loess. Its prediction performance was
evaluated for data from A, B, and A+B horizons. We found
that the models using individual pXRF spectra produced
better predictions for clay, silt, and sand, whereas those using
individual vis-NIR spectra performed better in TC and pH
predictions. Combining vis-NIR and pXRF spectra achieved
higher prediction accuracy than using individual vis-NIR and
pXRF spectra for most soil properties. The MLR model had
the highest prediction accuracy for clay, silt, sand, and pH
in A horizon and for TC in A+B horizon. We conclude that
proximal sensors, namely vis-NIR and pXRF spectrometers,
are good tools for predicting soil particle size fractions (sand,
silt, and clay), TC, and pH in soils developed from loess.
We suggest splitting the predictive models by horizon to
achieve high prediction accuracy for clay, sand, and silt
when using pXRF and vis-NIR spectra combined with the
Cubist model. However, the best prediction performance for
TC and pH was obtained without considering soil horizons
(A+B) when using combined pXRF and vis-NIR spectra
together with the Cubist model. The performance of this
methodology should be applied and tested further in order
to develop models for soils developed from different parent
materials, environmental conditions, and land uses, with
different machine learning algorithms.
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