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ABSTRACT

Accurately simulating the soil nitrogen cycle is crucial for assessing food security and resource
utilization efficiency. The accuracy of model predictions relies heavily on model calibration. This study
focused on the soil nitrogen cycle of winter wheat-summer maize rotation systems in the North China Plain
(NCP). Firstly, the expanded Vegetation-atmosphere Interface Processes (VIP) model was calibrated to
capture the dynamics of soil nitrogen cycle by using field measurements in three stations during 2000 to
2015. Secondly, the Morris and Sobol' algorithm were adopted to identify the sensitive parameters which
greatly impact the soil nitrate concentration, denitrification and ammonia volatilization rates. Finally, the
SCE-UA algorithm was used to optimize the selected sensitive parameters to improve the prediction
accuracy. The results showed that: (1) the sensitive parameters related to soil nitrate concentration were the
potential nitrification rate, Michaelis constant, microbial carbon-nitrogen ratio and slow humus
carbon-nitrogen ratio; the sensitive parameters related to denitrification rate were the potential denitrification
rate, Michaelis constant and N2O production rate; the sensitive parameters related to ammonia volatilization
rate were the coefficient of ammonia volatilization exchange and potential nitrification rate; (2) With the
optimized parameters, prediction efficiency was increased noticeably assessed by the coefficient of
determination, the average length (ARIL) at the 95 % confidence level for soil nitrate concentration,
denitrification and ammonia volatilization rate were 11.92, 0.008 and 4.26, respectively, and the percent of
coverage of the measured values in 95% confidence interval (P-95CI) were 68 %, 86 % and 92 %,
respectively. By identifying sensitive parameters related to soil nitrogen supports explicit guidance, the
expanded VIP model optimized by SCE-UA algorithm can effectively simulates the dynamics of the soil
nitrate concentration, denitrification and ammonia volatilization rate in the NCP.

Key Words: ammonia volatilization, denitrification rate, global sensitivity analyses, SCE-UA algorithm,
VIP model
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INTRODUCTION

The increase in grain yield relies heavily on the large investment of nitrogen fertilizer in the North
China Plain (NCP), which is a key region of grain production (Hartmann et al., 2015; Wang et al., 2017).
The amount of average annual nitrogen fertilizer application is as high as 550-600 kg hm-2 in the winter
wheat-summer maize rotation systems, which is much higher than the demand of crops in this region (Chen,
2003). Besides, the improper management practices, such as excessive irrigation, incorrect application rates
and inadequate sowing rates, will restrict the improvement of nitrogen use efficiencies and cause a series of
environmental problems (Zhu and Chen, 2002; Ju et al., 2006; Liu et al., 2006; Guo et al., 2010). Studying
the mechanisms of nitrogen transformation in the winter wheat-summer maize rotation systems is essential to
achieve high crop yield, to utilize efficiently the nitrogenous resources and to reduce the risk of
environmental pollution (Zhou et al., 2006; Erisman et al., 2007; Padgett et al., 2008; Zhang et al., 2017;
Zhang et al., 2018), which will be of great significance for making rational agricultural policies to ensure
food security and environmental sustainability.

Due to the constraints of complex soils, crops and planting patterns, it is time-consuming and laborious
to rely solely on field experiments to study the soil nitrogen transformation in agroecosystems (Smith et al.,
2008), while process-based models, as an important research tool, can economically assess the effects of
interactions between soil, climate and agricultural management on soil nitrogen dynamics. So far, numerous
models have been developed, such as EPIC (Williams, 1995), APSIM (McCown et al., 1996), DAISY
(Abrahamsen and Hansen, 2000), RZWQM (Team et al., 1998), WNMM (Li et al., 2007), DNDC (Li et al.,
1992) and WOFOST (Van Diepen et al., 1989). These models were typically developed to achieve specific
objectives and applied to multiple types of researches in NCP (Lu and Fan, 2013; Zhang et al., 2017; Chen et
al., 2018). For instance, the WOFOST, which is a mechanistic model that forecasts crop production, biomass
or water use efficiency on the basis of the biochemical processes (e.g., photosynthesis, respiration)
influenced by environmental conditions, is widely used to quantify the potential crop yield in the NCP (Wu
et al., 2006; Lu and Fan, 2013). The DNDC, which is designed to simulate carbon and nitrogen
biogeochemistry in agroecosystems, is used for predicting soil carbon dynamics (Zhang et al., 2017; Chen et
al., 2018), nitrogen leaching (Li et al., 2014) and emissions of trace gases (Li et al., 2010). RZWQM coupled
with the DSSAT crop models, is initially focused on assessing the productivity and water quality of various
cropping systems for various soil, climate and field management (Team et al., 1998), and its applications
mainly include nitrogen transport and utilization efficiency in the NCP (Yu et al., 2006; Li et al., 2015).
Because of models having their functional focuses and limitations, previously developed models have
advantages in assessing crop yield, soil carbon dynamics, water movement, nitrogen use efficiency and
emissions of trace gases to a certain extent. To further describe accurately the processes of soil nitrogen cycle,
it is necessary to develop a soil nitrogen cycle module which is suitable for climatic conditions and field
management in the NCP.

Generally, the mechanistic models require many input parameters, which make it difficult to calibrate
and lead an obvious uncertainty. It is necessary to identify parameters which have a significant impact on
model performance through sensitivity analysis (SA) before calibration. Fixing non-influential parameters at
reasonable values will greatly decrease the computational cost (Saltelli and Annoni, 2010). Most previous
studies used local sensitivity analysis (LSA) methods to evaluates model responses by consecutively varying
one parameter while keeping other parameters at a constant value (Heinen, 2006; Mo et al., 2012; Liang et
al., 2016). For example, Liang et al. (2016) analyzed soil nitrate and ammonium concentration by varying ±
10 % of each input parameter in the WHCNS model, and found that soil ammonium content was sensitive to
nitrogen conversion parameters, and the hydraulic parameters had little effect on it. However, local SA
method cannot analyze the effect of interactions between the different parameters on model performance. As
alternative, the global sensitivity analysis (GSA) methods, such as Morris (Morris, 1991), Sobol' (Sobol,
2001) and FAST algorithms (Cukier et al., 1973), can be used to evaluate the response to model performance
by simultaneously varying all parameters, which is helpful to fully understand the sensitivity of the model
parameters (Lamboni et al., 2009; Mo et al., 2012; Liang et al., 2017). Such as, Morris and Sobol' methods
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were used to evaluate the response of nitrate leaching to soil hydraulic and soil organic transformation
parameters and found that soil saturated water content and field capacity were the most influential
parameters (Liang et al., 2017). Chen et al. (2018) used Sobol' method to screen out the influential
parameters for nitrogen transportation and identified the most sensitive parameter is potential denitrification
rate. However, there were few studies that adopted the GSA methods to identify completely the sensitive
parameters of soil nitrogen cycle.

Generally, the sources contributing to modeling uncertainty are incorrect input data, unreasonable
model structure and uncertain parameters values (Refsgaard and Storm, 1996). Various methods have been
developed to deal with parameter uncertainty, such as the generalized likelihood uncertainty estimation
(GLUE) (Beven and Binley, 1992), Simulated Annealing algorithm (Kirkpatrick et al., 1983), Genetic
algorithm (Whitley, 1994) and SCE-UA algorithm (Duan et al., 1994), have been developed. These
algorithms were widely used in parameter calibration and uncertainty analysis (Vrugt et al., 2003; Dai et al.,
2009; Zhang et al., 2009). For example, six parameters of CN-SIM were carried out with a multi-objective
genetic algorithm (NSGA-II), by minimizing the Relative Root Mean Squared Error between observations
and simulations with data of respired C and soil inorganic N measured on three soils (Cavalli and Bechini,
2012). Rafique et al. (2015) used PEST software to optimize the parameters of N2O emissions in the
DayCent model and found that the simulated accuracy of the optimized N2O flux was improved by 63%.
Previous researches have individually optimized parameters related to the nitrogen cycle processes, such as
soil organic matter decomposition or denitrification process (Cavalli and Bechini, 2012; Rafique et al., 2015).
Based on the prior SA results, it can greatly improve the efficiency of parameter calibration by selecting the
appropriate calibration algorithm. However, there were few studies on optimizing the parameters related to
the nitrogen cycle as a whole in an agroecosystem. In this study, based on SA results, the SCE-UA algorithm
was used to calibrate the model and provide technical support for the promotion and application of the VIP
(Vegetation-atmosphere Interface Processes) model.

The VIP model mainly accounts for soil organic matter decomposition processes, photosynthesis, soil
hydrothermal processes, vegetation dynamics and energy partition (Mo and Liu, 2001; Mo et al., 2012).
After years of development and uncertainty study of model parameters, the VIP model has been successfully
used to simulate winter wheat-summer maize yield, evapotranspiration and water use efficiency in the NCP
(Mo et al., 2012). This study tries to identify the sensitive parameters that affect the soil nitrogen cycle in a
winter wheat-summer maize rotation system in the NCP and calculate the uncertainty interval of the
simulation results caused by parameter uncertainty. The objectives of this study are: (1) to expand the
nitrogen cycle module in VIP model based on the existing soil nitrogen cycle theory and method to improve
its performance in soil nitrogen cycle; (2) to conduct a global sensitivity analysis by Morris and Sobol'
algorithm to identify the sensitive parameters of nitrogen cycle process in the study area; (3) to perform
parameters optimization by SCE-UA algorithm based on the previous SA results and calculate the
uncertainty interval of the VIP performance.

MATERIAL AND METHODS

Description of the study area

The NCP, which is located in eastern China, lies between 31º 14' – 40º 25' N latitude and 112º 48' – 122º
45' E longitude (Fig. 1). Its area is about 330,000 km2, 70 % of which is agricultural land. It belongs to the
semi-arid monsoon climate zone with most rainfall occurring in summer (Hu, 2012). The annual average
temperature varies from 10 °C to 15 °C and sunshine duration is about 2800 h in the central region. It is a
key granary in China, in which the winter wheat-summer maize rotation system is the main planting pattern
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in this region (Hu, 2012). Therefore, this dominant planting pattern was selected for soil nitrogen cycle
simulations. Data of field experiments in three ecological stations (Fengqiu, Yucheng and Luancheng) in
NCP were selected (Fig. 1).

Fig. 1 Location map of the study area and the spatial distributions of agricultural ecology experimental stations.

Data

Data for simulation. The driving data consisted of daily meteorological records, soil data and field
management data were employed. Among them, a considerable amount of daily meteorological variables
was collected at three ecology stations (Fengqiu, Yucheng and Luancheng station) from China Ecosystem
Research Network (CERN) (http://www.cnern.org.cn/data/). The time period was from 2007 to 2010 at
Fengqiu Ecology Station, from 2000 to 2015 at Yucheng Ecology Station and from 2003 to 2010 at
Luancheng Ecology Station (Table I).

TABLE I

Overview of site information collected for driving expanded VIP model
Data type Description Source

Meteorological
data

The meteorological data maximum temperature,
minimum temperature, average temperature, relative
humidity, sunshine hours, precipitation and wind speed.
The meteorological data are monitored according to the
CERN specifications.

CERN

Soil data

Percentages of sand, silt, clay and soil organic matter as
well as bulk density of the different soil layers at three
ecology station. Hydraulic characteristics were estimated
using the pedo-transfer function.

Huang et al., 2015;

Ma, 2004; Li, 2007

Field
management

Nitrogen fertilizer is applied before precipitation or
irrigation. About 50 % of total N fertilizer was applied
into the surface soil before sowing and the rest was
applied at heading stage for winter wheat. Half of N
fertilizer was applied at jointing stages and the rest at
tasseling stages for summer maize.

CERN;

Fang, et al.,2006;

Huang, 2011

Soil data includes soil physical, chemical, and hydraulic properties in different layers (Table II). The
physical and chemical properties of the soil (particle fraction, soil bulk density, and organic matter) were
collected from the literature (Huang et al., 2015; Ma, 2004; Li, 2007). The Rosetta tripod transfer function
was used to estimate the hydraulic characteristics of the soil from the bulk density and the percentages of
sand, silt, and clay using the pedo-transfer function (Schaap et al., 2001). The means of indirect estimating
soil hydraulic parameters by pedo-transfer function has been widely used in agricultural hydrological
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simulation studies (Mishra et al., 2013; Jiang et al., 2015; Li and Ren, 2019).

TABLE II

Soil physicochemical properties and hydraulic parameters of the three experimental fields used for expanded VIP
simulation

Location Soil
layer

Particle fraction
BD SOM θr θs α n Kssand silt clay

cm % % % g cm−3 g kg−1 cm3

cm−3
cm3

cm−3 cm−3 − cm
day−1

Fengqiu

0-20 72.75 17.53 9.72 1.52 11.12 0.0442 0.3821 0.0353 1.5274 56.33
20-40 66.86 21.39 11.75 1.52 6.13 0.0451 0.3805 0.0307 1.4483 38.23
40-60 46.95 34.58 18.47 1.49 6.98 0.0560 0.3836 0.0137 1.4563 13.23
60-80 43.34 40.37 16.29 1.48 6.58 0.0524 0.3750 0.0112 1.4952 13.51
80-100 30.94 55.43 13.63 1.43 2.65 0.0521 0.3760 0.0063 1.6219 20.13
100-120 35.97 55.77 8.26 1.41 2.34 0.0416 0.3628 0.0074 1.5887 34.12

Yucheng

0-15 13.46 73.44 13.10 1.47 14.40 0.0883 0.4554 0.0039 1.7977 21.11
15-70 8.06 79.12 12.82 1.56 5.50 0.0745 0.4249 0.0027 1.7420 14.16
70-76 5.38 77.00 17.62 1.45 6.40 0.0985 0.4946 0.0020 1.9215 14.97
76-113 15.46 78.52 6.02 1.38 3.80 0.0462 0.4678 0.0040 2.6303 52.21
113-121 5.78 63.08 31.14 1.50 7.10 0.2902 0.6558 0.0033 1.3132 5.57

Luancheng

0-20 41.80 53.60 4.60 1.22 10.40 0.0379 0.3896 0.0071 1.5912 94.67
20-40 35.70 58.00 6.30 1.44 3.90 0.0380 0.3531 0.0082 1.5667 36.26
40-110 29.20 57.40 13.50 1.46 6.40 0.0518 0.3712 0.0063 1.6209 18.31
110-150 21.90 64.10 14.00 1.56 6.70 0.0532 0.3631 0.0065 1.5987 12.36

Note: BD represents soil bulk density; SOM represents soil organic matter; θ� represents residual water content; θ�
represents saturated water content; α and n represent shape factors; Ks represents saturated conductivity.

The planting system is winter wheat-summer maize rotation. The planting methods and field
management recorded at three ecology stations were collected from the literature (Huang, 2011; Fang, et
al.,2006) and from CERN. The details on planting date, harvesting date, nitrogen fertilizer and irrigation can
be found in Table III. Urea was used as nitrogen fertilizer. Nitrogen was divided into base fertilizer and
topdressing application. Irrigation treatment is performed immediately after the topdressing of wheat in the
season, and after the topdressing of the maize season, according to weather conditions, if there is no
precipitation process or the rainfall is low, the irrigation treatment is performed.

TABLE III

Overview of site information about planting methods and field management recorded at three ecology stations

variable site crop type planting
date

harvesting
date

Nitrogen
fertilizer irrigation

Kg ha-1 mm

Soil nitrate
concentration Fengqiu

wheat 2007/10/17 2008/6/6 207 125
maize 2008/6/10 2008/9/20 207 100
wheat 2008/10/17 2009/6/7 207 125
maize 2009/6/9 2009/9/24 207 100

https://www.baidu.com/link?url=AKLha2Ib8cuLI897Vhn6F1PylgjNW1S0lrcG0J_rUJviMK-Pkbo9PZ8rYEBulFC5VfdWSC9Dh5u1fyEvtQ7UGElq7w7FbuXA79KyHjOkJ2pUqJ3JCVP99CYuZkhKC79a&wd=&eqid=fd6d484d00100079000000035d68c4ce
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Yucheng

wheat 2000/10/10 2001/6/8 300 248
maize 2001/6/12 2001/9/25 300 202
wheat 2001/10/5 2002/6/5 300 347
maize 2002/6/8 2002/9/28 300 324

Luancheng

wheat 2003/10/7 2004/6/3 150 150
maize 2004/6/8 2004/9/28 173 —
wheat 2004/10/7 2005/6/6 253 190
maize 2005/6/9 2005/9/26 276 270

Denitrification
rate

Fengqiu

wheat 2008/10/11 2009/6/3 230 163
maize 2009/6/10 2009/9/23 230 67
wheat 2009/10/14 2010/6/11 230 213
maize 2010/6/13 2010/9/19 230 103

Yucheng
wheat 2013/10/15 2014/6/10 212 338
maize 2014/6/15 2014/10/5 240 —

Luancheng

wheat 2008/10/11 2009/6/11 200 80
maize 2009/6/14 2009/9/23 200 65
wheat 2009/10/9 2010/6/7 200 60
maize 2010/6/10 2010/9/27 200 70

Ammonia
volatilization
rate

Fengqiu

wheat 2008/10/11 2009/6/3 230 163
maize 2009/6/10 2009/9/23 230 67
wheat 2009/10/14 2010/6/11 230 213
maize 2010/6/13 2010/9/19 230 103

Yucheng
wheat 2014/10/24 2015/6/11 225 240
maize 2015/6/18 2015/10/2 225 135

Luancheng

wheat 2003/10/7 2004/6/3 104 210
maize 2004/6/5 2004/9/28 173 60
wheat 2009/10/9 2010/6/7 180 80
maize 2010/6/10 2010/9/27 150 65

Note: “—” means no irrigation.

Data for calibration and validation. The observed data were measured at three ecology stations
(Table IV). Field measurements of soil nitrate concentrations were obtained from the China Ecosystem
Research Network (CERN). To determine the soil nitrate content, 10 g of each soil sample was extracted
with 50 mL of 2 mol L-1 KCL. The soil nitrate concentration of the extract was measured directly at 220 and
275 nm (Norman et al., 1985). The Nitrous oxide (N2O) flux was conducted by a closed static system.
During the measurement, a gas sample is taken from a sampling port at the top of the box, and 20 ml is taken
each time. At the same time, the temperature in the box, the soil temperature of 10 cm and the air
temperature are measured. Then the samples were measured with a HP-5890 (manufactured by
Hewlett-Packard) gas chromatography / electron capture detector (GC / ECD). The measurement conditions:
the front column and the analysis column were stainless steel packed columns, and the inner diameter was 2
mm × 1 mm; column temperature was 55�, ECD detector temperature was 330�; and high purity nitrogen
(30 ml min-1) was used as the carrier gas. The NH3 volatility flux was measured using a semi-open static
system described by Liu et al. (2003). After fertilization, the ammonia capture system was placed in each
plot. A vacuum pump was used to make the ammonia (NH3) volatilized from the soil entering the scrubber
with the air stream, and then absorbed by 2 % boric acid. Absorbed ammonia was determined by indophenol
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blue colorimetry at 625 nm (UV1800, Shimadzu) (Denmead et al., 1976).

TABLE IV

Overview of observation information collected to calibrate and validate the expanded VIP model simulation
Variable station period source Sampling method

soil nitrate
concentration

Fengqiu 2007 – 2009 CERN

Soil samples were collected in layers
at a distance of 20 cm and each plot
was randomly taken at two points in
layers.

Yucheng 2000 – 2002 Fang et
al., 2006

During wheat-maize growing period,
soil nitrate nitrogen was taken in 20
cm intervals at monthly intervals
during each growing season.

Luancheng 2003 – 2005 CERN Soil samples were collected in layers
at a distance of 20 cm after harvest.

Denitrification
rate

Fengqiu 2008 – 2010

Huang,
2011;
Huang et
al., 2015

The samples were collected at one
weekly intervals during the wheat and
maize growing period.

Yucheng 2013 – 2014 Xu et al.,
2015

The wheat wintering period
(mid-December to early March of the
following year) was collected only
once, and the sampling for other
growth periods were one weekly
interval.

Luancheng 2008 – 2010 Wang et
al., 2011

The observation frequency was once a
week during the wheat and maize
growing period, and each treatment
was repeated 3 times.

Ammonia
volatilization
rate

Fengqiu 2008 – 2010 Huang,
2011

The measurement was started on the
day after fertilization. samples were
taken at 8:00 the next morning. Each
measurement lasted 18 – 20 days.

Yucheng 2014 – 2015 Wen, 2016

Sampling is performed daily after
fertilization. After one week, samples
were taken every 1 – 3 days according
to the degree of ammonia
volatilization, and then the interval
was extended to 7 days until no
ammonia volatilization can be
monitored.



8

Luancheng 2003 – 2004;
2009 – 2010

Dong et
al., 2011,
2013

After fertilization, the daily
measurement was performed. The
measurement time were 6 – 9 days
after application of wheat base
fertilizer, wheat topdressing, and
maize topdressing.

Model description

The VIP model is a process-based ecosystem model independently developed by the Mo Xingguo
Research Group of the Chinese Academy of Sciences. The model includes the photosynthesis, vegetation
growth dynamics, the soil hydrothermal movement process, the soil carbon cycle, and the energy balance.
Soil heat transfer and soil water movement are calculated using the thermal diffusion equation and the
Richards equation, respectively. The detailed description of the VIP model can be found in the literature (Mo
and Liu, 2001; Mo et al., 2012). In the original VIP model, soil nitrogen cycle module accounts for the
turnover and mineralization process between the soil organic nitrogen pools and neglects the conversion
between inorganic nitrogen pools. On this basis, the processes of the nitrogen cycle module including
nitrification, volatilization, denitrification and immobilization were completed in this study (Fig. 2).

Fig. 2 Carbon and nitrogen pools and fluxes in expanded VIP model.

Soil organic matter mineralization. The soil organic matter mineralization module is adopted from
the CENTURY model (Parton et al., 1993). Soil organic C and N are divided into five pools: structural litter
pool, metabolic litter pool, microbial biomass pool, slow humus pool and passive humus pool. In addition to
the magnitude difference, the turnover rates of five pools are also different from a few weeks to hundreds of
years. Different organic C pools are controlled by the first-order kinetic equations and the decomposition rate
is proportional to the size of the pools (Parton et al., 1993):

���
�� =− �� ∙ �� (1)

Where �� is the carbon content of the pool �, �� is the decomposition rate of the pool �; it is influenced by
soil moisture and temperature, wherein the decomposition rate is:

�� = ��
� ∙ ���� ∙ ���� (2)
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where, ��
� is the decomposition rate of organic matters under optimal moisture and temperature conditions,

d−1; t is the soil temperature, °C; w is the soil water content, g kg−1; ���� and ���� represent temperature and
moisture correction function, respectively. The decomposition rates of different organic N pools are:

���

�� =
�� ��
��h���

(3)

Where �� is the soil nitrate concentration of the pool �, and ��h��� is the carbon-nitrogen ratio of the pool
�.

Nitrification rate. The substrate (���
�、��、���) content, soil temperature and water content are

considered to be the abiotic factors which have the effect of nitrification rate. In the case of relatively high
soil moisture (1.5 < pF < 2.5), pH value of 4-8 and temperature above 5 °C, soil microbial metabolic activity
is limited by soil organic carbon content. In the absence of oxygen stress, most ammonium nitrogen (���

�) is
rapidly oxidized into nitrate (���

− ), and the nitrification rate in expanded VIP model is described by the
Michaelis-Menten equation (Abrahamsen and Hansen, 2000):

���� =
����
� �����

� ��������
� ������㤵

����� ��㤵
(4)

����
� ��� =

� � � � °C
�䚘ᢉ〮 � − � � °C � � � �°C

�䚘ᢉ�� � °C � � � �� °C
��� �䚘�⸱ − �䚘��⸱�� �䚘��ᢉ㱄��� � � �� °C

(5)

����
� ���

=

� � � − ᢉ�−�
�t − ᢉ���

ᢉ䚘〮 ᢉ− ᢉ�−� � � � − ᢉ�−�䚘〮

ᢉ − ᢉ�−�䚘〮 � � � − ᢉ��䚘〮

ᢉ −
�t − ᢉ���

�䚘〮 − ᢉ��䚘〮 � � � − ᢉ�−�

� − ᢉ�−� � �

(6)

Where: ���� is the nitrification rate, μg cm−3 day−1; ����
� is the nitrification rate constant under optimal

temperature and moisture content, μg cm−3 day−1; ��㤵 is the ammonium concentration, μg cm−3; ���� is
the semi-saturation constant, μg cm−3; ����

� ��� and ����
� ��� are soil temperature functions and pressure

potential function, respectively.

Denitrification rate. Denitrification rates are multiplicative functions of soil potential denitrification
rate and dimensionless functions that explicate nitrate concentrations, soil temperature and moisture effects
(Johnsson et al., 1991). Henault et al. (2000) proposed a NEMIS denitrification rate prediction model based
on the measured values of denitrification rate of undisturbed soil, nitrate concentration and water-filled pore
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space. Denitrification rate is expressed as (Henault et al., 2000):

���� =
����
� �����

� ��������
�� ��������

����� ���
(7)

����
�� ���� =

� ��ᨨ � �䚘��
��ᨨ− �䚘��

�䚘��

ᢉ䚘⸱�
��ᨨ � �䚘��

(8)

����
� ��� =

���
� − ᢉᢉ �� �㱄 − 㱄 ∙ �����䚘ᢉ�

ᢉ� � � ᢉᢉ �

���
� − �� ∙ �����䚘ᢉ�

ᢉ� � � ᢉᢉ �
(9)

Where: ���� is the denitrification rate, μg cm−3 day−1; ����
� is the nitrification rate constant under the

optimal temperature and moisture content, μg cm−3 day−1; ���� is the semi-saturation constant, μg cm−3;
����
� ��� is the soil temperature function; ����

�� ���� is the water-filled pore space function; ��� is the soil
nitrate content, μg·cm−3.

Ammonia volatilization rate. The rate of ammonia volatilization is affected by soil ammonium
concentration, soil temperature and soil pH (Sherlock and Goh, 1984). It is expressed as:

φ�t� =
��t����������

��㌳��t�� ᢉ � ᢉ� �䚘�㱄�ᢉ�� �⸱�㱄䚘㱄�
����⸱䚘ᢉ〮 −��

(10)

Where: φ�t� is ammonia volatilization rate, kg hm−2 day−1; ��� is total amount of NH4 and NH3 in the soil,
kg hm−2; T is soil temperature, °C; pH is soil pH value; ��t������ is the exchange coefficient of ammonia in
soil and air; ��㌳��t�� is the exchange coefficient of ammonia in soil liquid water and soil.

Urea hydrolysis rate. Most of the nitrogen fertilizer applied is urea in the NCP. In the case of higher
temperature and soil moisture, urea hydrolysis finishes in a few days, while it will take a longer time under
lower temperature and dry conditions (Li et al., 2007). The models, such as NLEAP, GLEAMS and EPIC,
assume that urea hydrolysis occurs immediately, and urea is directly treated as ammonium nitrogen (Liang et
al., 2016). The urea hydrolysis process is described as (Li et al., 2007):

R��� = N������ᢉ − exp�� − �䚘〮���ᨨ�������� (11)

Where: N���� is the urea content in the soil, kg·hm−2; WFPS is water-filled pore space.
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Model initialization and parameters

Daily meteorological data measured at three ecology stations, which include maximum temperature,
minimum temperature, average temperature, relative humidity, sunshine hours, precipitation and wind speed,
was used to drive the expanded VIP model. The initial values of vegetation characteristics, such as initial
crop height, maximum rooting depth, soil temperature and soil water content were specified from field
observations or general site knowledge (Mo et al., 2001, 2012; Huang et al., 2015; Ma, 2004; Li, 2007;
CERN). Soil organic turnover and mineralization parameters in the expanded VIP model mainly include
different organic matter decomposition rates, carbon-nitrogen ratios, ammonia volatilization rates and
denitrification rate (Table V), which were collected from the literatures (Parton et al., 1993; Abrahamsen and
Hansen, 2000; Henault et al., 2000; Sherlock and Goh, 1984; Li et al., 2007; Williams et al., 1989). The
model was spun-up for 300 years, using randomly selected forcing from five years of observation data at
Yucheng stations. The model’s carbon and nitrogen pools stabilized after about 200 years. After the spin up,
the model was continually run forward from Oct. 1st, 2007 to Sep. 30th, 2010 at Fengqiu Ecology Station,
from Oct. 1st, 2000 to Sep. 30th, 2015 at Yucheng Ecology Station and from Oct. 1st, 2003 to Sep. 30th,
2010 at Luancheng Ecology Station, using the observed forcing. Output obtained from these simulations was
compared with corresponding observations.

TABLE V

Soil and crop nitrogen parameters in the expanded VIP model
Parameter Description maize wheat Unit
ksl Structural litter decomposition rate 0.0437 0.0437 day−1

kml Metabolic litter decomposition rate 0.0507 0.0507 day−1

kmb Microbial decomposition rate 0.02 0.02 day−1

ksh Slow humus decomposition rate 0.0004 0.0004 day−1

kph Inert humus decomposition rate 0.000008 0.000008 day−1

kur
Urea hydrolysis rate

10.0 10.0
kg
hm−2

day−1

cnmb Microbial nitrogen to carbon ratio 0.125 0.125
cnsh Slow humus nitrogen to carbon ratio 0.165 0.165
cnph Inert humus nitrogen to carbon ratio 0.145 0.145
Vs2a exchange coefficient (between soil and air) 0.3624 0.3624 day−1

Vw2s exchange coefficient (between soil and soil water) 0.03 0.03

ξnit Potential nitrification rate 8.0 8.0 g m−3

day−1

ξden Potential denitrification rate 20.0 20.0 g m−3

kden
Michaelis constant (denitrification)

22.0 22.0
kg
hm−2

day−1

knit Michaelis constant (nitrification) 55.0 55.0

φden Generate N2O rate 0.25 0.25 mg
kg−1

Tb Base temperature 8.0 0.0 �
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Tc Accumulated temperature 1800.0 3200.0 �
bn1 Seedling nitrogen concentration 0.064 0.060
bn2 Intermediate nitrogen concentration 0.0164 0.0231
bn3 Nitrogen concentration during maturity 0.0148 0.0134

Sensitivity analysis and optimization

For complex agroecosystems models, parameter optimization requires a high computational cost.
Through SA, the parameters, which have considerable effect on model performance, can be identified. Then,
non-influential parameters are fixed at reasonable values, which will decrease the computational cost without
reducing the model accuracy (Campolongo, 2007). In this study, the Morris method (Morris, 1991) is used
firstly to screen the influential parameters related to soil nitrate concentration, denitrification and ammonia
volatilization rate in the expanded VIP model. Then the first-order, second-order and total sensitivity indices
of the identified parameters are further quantitatively analyzed by Sobol' method (Sobol, 2001). Finally, the
SCE-UA algorithm (Duan et al., 1994) automatically optimizes the selected parameters within the range of
values, so that it can achieve the best agreement between simulated values and corresponding measured
values of soil nitrate concentration, denitrification and ammonia volatilization rate. Software PSUADE
(Problem Solving environment for Uncertainty Analysis and Design Exploration) is used for SA and
optimization (Tong, 2016). It provides several global SA methods, which include the Morris, Sobol' method
and SCE-UA optimization methods involved in this study. See the appendix for more details of Morris,
Sobol' and SCE-UA algorithm.

Objective function. During the optimization process, the core of SCE-UA algorithm (Duan et al.,
1994) is to solve the minimum value of the objective function, which is used to evaluate the consistency
between the observation and simulation value. Different objective functions are used to evaluate the different
characteristics of the model. Gupta et al. (1998) summarized several objective functions for parameter
optimization. In this study, root mean squared error is used to define the objective function. Depending on
the type of observations, the observations are grouped and weighted accordingly. The objective function is
divided into three groups: soil nitrate concentration, ammonia volatilization rate, and denitrification rate. The
specific form of the objective function is as follows:

φ =
ᢉ
�
�=ᢉ

��

��� − ᨨ�� �� ∙ ��� �
ᢉ
�
�=ᢉ

���

���� − ᨨ�� �� ∙ ����

�
ᢉ
�
�=ᢉ

����

����� − ᨨ���� �� ∙ �����

(12)

Where: φ is the objective function, ��、��� and ��� are the observed values of soil nitrate concentration,
ammonia volatilization and denitrification rate, respectively. ��� and ᨨ�� represent measured and simulated
values, respectively. ���、 ���� and ����� are the weighting coefficients of soil nitrate concentration,
ammonia volatilization and denitrification rate, respectively, and their value is 1/3 in this study.
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Evaluating indicators of model performance. The single indicator is difficult to evaluate
comprehensively the model performance. It is necessary to describe the simulation accuracy by different
indicators. In this study, three statistical indicators are used to assess the agreement between measured values
and corresponding simulated values. The indicators are the root mean square error (RMSE) (Willmott, 1982),
the Nash-Sutcliffe efficiency coefficient (NSE) (Nash and Sutcliffe, 1970), and the decision coefficient (R2)
(Nagelkerke, 1991). In addition to the statistical indicators (RMSE, NSE and R2) mentioned above, this study
uses two other statistical indicators, which are the average relative interval length (ARIL), and the percent of
measured values coverage (P-95CI) at the 95 % confidence level, proposed by Li et al. (2010) to evaluate the
uncertainty of the model performance. The equations were expressed as follows:

ARIL =
ᢉ
� �=ᢉ

�
ᨨ㱄⸱䚘〮� � − ᨨ�䚘〮� � ����� (13)

P − 㱄〮CI =
����
�

�ᢉ��� (14)

Where: ᨨ㱄⸱䚘〮� and ᨨ�䚘〮� are the quantile value at the 97.5 % and 2.5 % of the simulated value set after
10,000 samples by Monte Carlo; ���� is the number of measured values within the 95 % confidence
interval. Smaller ARIL values indicate that the uncertainty interval is very narrow and a larger value of
P-95CI indicates that the uncertainty interval is very reliable (Li et al., 2010).

RESULTS

Sensitivity analysis

Screening the sensitive parameters by the Morris method. The Morris method is adopted to
distinguish qualitatively sensitive parameters related to soil nitrate concentration, denitrification and
ammonia volatilization rate. It needs to define the number of levels p (Yang, 2011), and the value of p is 8 in
this study. Besides, this study assumes that all inputs are evenly distributed within the parameter range.

The results are shown by a plot with modified mean values �� (Fig. 3), respectively. The relatively
larger magnitude of deviation from the origin of coordinates for a parameter indicates its importance. It is
shown that the sensitive parameters related to soil nitrate concentration are potential nitrification rate, urea
decomposition rate, semi-saturation constant, the decomposition rate of structural litter, the decomposition
rate of metabolic litter, microbial decomposition rate, microbial nitrogen to carbon ratio and slow humus
nitrogen to carbon ratio. The sensitive parameters related to denitrification rate are potential denitrification
rate, potential nitrification rate, the decomposition rate of structural litter, the decomposition rate of
metabolic litter, microbial nitrogen-carbon ratio, slow humus nitrogen-carbon ratio and the Michaelis
constant of nitrification. The sensitive parameters related to ammonia volatilization rate are ammonia
volatilization exchange coefficient, maximum nitrification rate and urea decomposition rate.
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Fig.3 Sensitivity analyzing results of Morris for soil nitrate concentration, denitrification rate and ammonia
volatilization rate at Fengqiu, Yucheng and Luancheng ecology stations. Sample size, which is calculated by � = �� �
ᢉ� � �, is 440 in this study (n number parameter and replication times r is 20).

Quantitative analysis of the sensitive parameters by Sobol' method. Due to the Morris method is
difficult to obtain the quantitative sensitivity of specific parameters, the Sobol' method is used to estimate the
first-order sensitivity index, second-order sensitivity index and total sensitivity indices of expanded VIP
parameters. The first-order sensitivity index and total sensitivity indices of soil nitrate concentration,
denitrification and ammonia volatilization rate at Fengqiu, Yucheng and Luancheng Ecology Stations are
shown in Figure 4.

At three stations, the ranking of the parameters for soil nitrate concentration obtained from the results of
first-order sensitivity indices is consistent with that obtained from the total sensitivity indices. In detail, the
potential nitrification rate is the most sensitive parameter at three the stations (Fig. 4A), and its first-order
indices are 0.202, 0.246 and 0.189, respectively, at three ecology stations. This result can be explained by the
Michaelis-Menten equation (Eq. 4) (Abrahamsen and Hansen, 2000), and the potential nitrification rate
directly determines the nitrification process. From the results of total sensitivity indices (Fig. 4B), the soil
nitrate concentration is highly affected by the potential nitrification rate, urea decomposition rate,
semi-saturation constant and metabolic litter decomposition rate, which on average accounts for 29 %, 16 %,
14 %, and 11 % of soil nitrate concentration variability, respectively.

According to the results of first-order indices, the denitrification rate is the most sensitive to potential
denitrification rate and potential nitrification rate at three the stations (Fig. 4C). The first-order indices are
0.19, 0.25 and 0.19 for potential denitrification rate and 0.18, 0.24 and 0.17 for potential nitrification rate at
Fengqiu, Yucheng and Luancheng Ecology Stations, respectively. From the total sensitivity index (Fig. 4D),
the denitrification rate is sensitive to potential denitrification rate, potential nitrification rate and urea
decomposition rate, which on average accounts for 31 %, 23 % and 30 % of denitrification rate variability,
respectively.

From the results of first-order sensitivity indices, ammonia volatilization exchange coefficient is the
most sensitive parameter for ammonia volatilization rate at all three ecology stations (Fig. 4E), and its
first-order indices are 0.17, 0.20 and 0.17, respectively. The sensitive parameter from the results of total
sensitivity indices is similar to that from the results of first-order sensitivity indices, with a little different:
exchange coefficient ( ���� ) rather than exchange coefficient ( ���� ) is the most sensitive parameter for
ammonia volatilization rate at Fengqiu and Yucheng ecology stations (Fig. 4F). In general, the ammonia
volatilization rate is sensitive to ammonia volatilization exchange coefficients (���� and ���� ), potential
nitrification rate and urea decomposition rate, which on average accounts for 23 %, 28 %, 17 % and 12 % of
ammonia volatilization rate variability, respectively.

Fig. 4 Sensitivity analysis results of Sobol' first-order and total index for soil nitrate concentration (A and B),
denitrification rate (C and D) and ammonia volatilization rate (E and F) at Fengqiu, Yucheng and Luancheng ecology
stations. Samples size of Sobol' can be estimated by � = ��� �� � � (n represents number parameter and r represents
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replication times)

The second-order index represents the influence of the interaction between two parameters on the
objective function. Fig 5 shows the second-order index between different parameters related to soil nitrate
concentration, denitrification rate and ammonia volatilization rate at Fengqiu, Yucheng and Luancheng
ecology stations. For soil nitrate concentration, the second-order index between potential nitrification and
urea decomposition rate index shows the most interaction. And the second-order indices are 0.0046, 0.0026
and 0.0035, respectively, at Fengqiu, Yucheng and Luancheng Ecology Stations. For denitrification rate, the
interaction between potential denitrification and urea decomposition rate is the most sensitive. And the
second-order indices are 0.0145, 0.0116 and 0.0.0159, respectively. For ammonia volatilization rate, the
interaction between two ammonia volatilization exchange coefficients (���� and ����) is the most sensitive.
And the second-order indices are 0.0089, 0.0086 and 0.0084, respectively. Besides, when the first-order
index of a parameter on the objective function is significant, the second-order interaction is also significant.

Fig. 5 Sensitivity analysis results of Sobol' second-order for soil nitrate concentration, denitrification rate and
ammonia volatilization rate at Fengqiu, Yucheng and Luancheng ecology station.

Model calibration by SCE-UA optimization algorithm

According to the period and source of the observed data collected at the three experimental (Fengqiu,
Yucheng and Luancheng) stations, this study calibrates the soil nitrate, denitrification rate and ammonia
volatilization rate to validate performance of expanded VIP model in soil nitrogen cycle. Besides, to improve
the calibration efficiency and accuracy, the SCE-UA algorithm is adopted to optimize the selected parameters
based on the prior SA results, so that it achieves a good fit between measured and corresponding simulated
values of soil nitrate, denitrification rate and ammonia volatilization rate. Evaluation indicators of soil nitrate
concentration, denitrification and ammonia volatilization rate between reference value and SCE-UA
optimization algorithm (Table VI). Specific parameter selection and the range of values of each parameter at
three ecology stations are shown in Table VII.

TABLE VI

Evaluation indicators of soil nitrate concentration, denitrification and ammonia volatilization rate between reference
value and SCE-UA optimization algorithm

Item
Reference value SCE-UA optimization

algorithm
RMSE NSE R2 RMSE NSE R2

Nitrate concentration 12.5 0.53 0.50 9.33 0.67 0.69
Denitrification rate 0.06 0.52 0.67 0.04 0.73 0.78
Ammonia volatilization
rate 1.58 0.50 0.53 0.81 0.61 0.65
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TABLE VII

Model related parameters after optimized by SCE-UA

Parameter Description Reference
value Range of values SCE-UA optimization value UnitFengqiu Luancheng Yucheng

ksl Structural litter
decomposition rate 0.0437 (0.03496,0.05244) 0.0395 0.0474 0.0391 day−1

kml Metabolic litter
decomposition rate 0.0507 (0.04056,0.06084) 0.0583 0.0711 0.0525 day−1

kmb Microbial
decomposition rate 0.02 (0.016,0.024) 0.024 0.0238 0.0216 day−1

kur Fertilizer
decomposition rate 10 (8.0,12.0) 11.8 10.16 11.62 Kg hm−2 day−1

cnmb Microbial nitrogen to
carbon ratio 0.125 (0.1,0.15) 0.1 0.141 0.13

cnsh Slow humus nitrogen
to carbon ratio 0.165 (0.132,0.198) 0.132 0.1584 0.128

Vs2a exchange coefficient
(between soil and air) 0.3624 (0.28992,0.43488) 0.325 0.391 0.414 day−1

Vw2s
exchange coefficient
(between soil and soil
water)

0.03 (0.024,0.036) 0.0259 0.033 0.35

ξnit Maximum
nitrification rate 8 (6.4,9.6) 9.5 8.4 0.855 g m−3 day−1

ξden Maximum
denitrification rate 3 (2.4,3.6) 2.46 2.952 2.214 kg hm−2 day−1

kden Michaelis constant
(Denitrification) 22 (17.6,26.4) 22.3 25.76 20.07 mg kg−1

knit Michaelis constant
(Nitrification) 55 (44,66) 45 51 40.5

φden Generate N2O rate 0.25 (0.2,0.3) 0.237 0.284 0.213 mg kg−1

Dynamics of soil nitrate concentration during winter wheat-summer maize rotation system.
Accurate simulation of soil nitrate concentration is helpful in further assessing the dynamics of soil organic
turnover and mineralization. In this study, the simulated soil nitrate concentrations are evaluated with field
observed values in soil surface (0 – 20 cm) and bottom layer (20 – 120 cm) during the growth periods of
wheat and maize. The datasets of soil nitrate concentration from 2007 to 2008 at Fengqiu station and from
2000 to 2001 at Yucheng station were used to calibrate the expanded VIP model and the datasets from2008 to
2009 at Fengqiu station and from 2001 to 2002 at Yucheng station were used to validate the model (Fig 6).
The statistical results show that, based on SCE-UA algorithm, the simulated soil nitrate concentration is close
to the observed values in soil surface layer (0 – 20 cm) (Fig. 6A-1, 2), but it is overrated compared to
measured values in soil bottom layer (20 – 120 cm) (Fig. 6A-3, 4) at Fengqiu station. In detail, the values of
the RMSE, NSE and R2 are 9.54 kg hm-2, 0.59 and 0.61, respectively. The validation also obtains reasonable
statistical results (RMSE = 11.52 kg hm-2, NSE = 0.43, and R2 = 0.49). The results also show that, at
Yucheng station, the soil nitrate concentration values are not significantly overestimated or underestimated in
both the calibration (Fig. 6B-1 and Fig. 6B-3) and validation (Fig. 6B-2 and Fig. 6B-4) periods. The
simulation of soil nitrate concentration achieves good results with an RMSE of 8.36 kg hm-2, NSE of 0.68
and R2 of 0.62 in the calibration. The validation also shows good results (RMSE = 10.76 kg hm-2, NSE =
0.59, and R2 = 0.53). After calibration by SCE-UA algorithm, the RSME of soil nitrate concentrations are
reduced by 34.2 % and 31.6 %, and the R2 values are increased by 41.2 % and 39.1 %, respectively, at
Fengqiu and Yucheng Station.

As shown in Fig. 6, the applied urea rapidly decomposes and converts into nitrate nitrogen, which leads
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to rapidly increase of soil nitrate concentration. The soil nitrate concentration decreases slowly during the
seeding to reviving stage and then decreases rapidly after winter wheat reviving. The main reason is that the
ammonia volatilization and denitrification process intensify with the temperature increased, and the crops
nitrogen uptake increased rapidly after reviving stage. The results indicate that the expanded VIP model after
calibrated by SCE-UA algorithm can simulate the soil nitrate concentration well. Given the complexity of
nitrogen transformation, the ranges of these indices appear to be acceptable. These results indicated that the
model performed well in simulating soil nitrate transport in this region. Liang et al. (2016) reported that the
NSE values of soil nitrate concentrations simulation in different soil layers ranged from 0.29 – 0.63 for the
four sites. Kersebaum et al. (2007) compared the simulation results of 13 soil crop models and found that the
NSE of mineral N usually have negative values. In this study, these statistical indices are all within these
reported acceptable ranges. Considering the high variability measured values of soil nitrate concentrations,
the model prediction is accurate enough to provide guidance for decision making.

Fig. 6 Simulated and observed values for soil nitrate concentration (δ���) in soil surface (0 – 20 cm) and bottom layer
(20 – 120 cm) during the growth periods of wheat and maize at Fengqiu and Yucheng ecology station during the
calibration (A-1, A-3, B-1 and B-3) and validation (A-2, A-4, B-2 and B-4). Red arrow represents fertilization practice.

Denitrification rate. The datasets of denitrification rate during the growth periods of wheat and
maize from 2008 to 2009 at Fengqiu and Luancheng station were used to calibrate the expanded VIP model
and the datasets from 2009 to 2010 were used to validate the model in this study (Fig. 7). Based on SCE-UA
algorithm, the statistical results of denitrification rate show that the expanded VIP model can effectively
simulate the denitrification process in general during calibration (Fig. 7A-1 and Fig. 7B-1) and validation
(Fig. 7A-2 and Fig. 7B-2) periods. The RMSE, NSE and R2 are 0.04 kg hm-2, 0.71, and 0.66, respectively, in
calibration process at Fengqiu station. The corresponding values are 0.03 kg hm-2, 0.77, and 0.72,
respectively, at Luancheng station. The validation also shows fair statistical results based on the RMSE (0.06
kg hm-2and 0.04 kg hm-2, respectively), NSE (0.62 and 0.64, respectively), and R2 (0.53 and 0.68,
respectively). After calibration by SCE-UA algorithm, the results show that the RSME of denitrification rate
are reduced by 29.8 % and 21.5 %, and the R2 values are increased by 33.2 % and 35.6 % at Fengqiu and
Luancheng Station. Besides, the 1:1 line of the fitting diagram also shows that the simulation of
denitrification rate is acceptable.

The probability and intensity of denitrification progress during the maize growing season is greater than
that in wheat growing season, as shown in Fig. 7. The low water content becomes the main limiting factor of
the denitrification process during the wheat growing period. Furthermore, although the denitrification
intensity has increased, there is no peak of denitrification in 2008 at Fengqiu station (Fig. 7A-1), because of
the concentration of nitrate is already at a low level. The basic pattern of denitrification intensity in the maize
period of 2009 (Fig. 7A-2) is similar to that at Luancheng station (Fig. 7B-1 and Fig. 7B-2), because the
substrate (soil nitrate concentration) has maintained a relatively high level and is conducive to the microbial
denitrification. In this study, the R2 value of the denitrification rate was from 0.53 to 0.71, which is similar to
the previous research conclusions (Li et al. 2007; Gu et al 2016). The DNDC model was used to simulate
N2O emissions during the winter wheat-summer maize growing season and the correlation coefficient ranged
from 0.79 to 0.9. Gu et al. (2016) evaluated nitrous oxide emissions from a winter wheat-summer corn
rotation during a 25-year fertilization trial in northwestern China. In addition, the expanded VIP model has a
higher denitrification rate in the maize season than in the winter wheat season, which is consistent with
previous results.
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Fig. 7 Simulated and observed values for denitrification rate ( ���� ) during the calibration (A-1, and B-1) and
validation (A-2, and B-2) at Fengqiu and Luancheng ecology station.

Ammonia volatilization rate. Ammonia volatilization is one of the main ways of nitrogen fertilizer
loss in agroecosystems. The datasets of ammonia volatilization rate during the growth periods from 2008 to
2009 at Fengqiu station and from 2003 to 2004 at Luancheng station were used to calibrate the expanded VIP
model and the datasets from 2009 to 2010 at Fengqiu station and Luancheng station were used to validate the
model. Figure 8 presents the simulated and measured values of ammonia volatilization rate under
fertilization treatments based on the SCE-UA algorithm and the reference values at Fengqiu and Luancheng
station. The statistical results show that, based on SCE-UA algorithm, the simulated ammonia volatilization
rate approximates the measured values in model calibration, with an RMSE of 0.91 kg hm-2 (Fig. 8A-1), but
it is overestimated compared to measured values during model validation process, with an RMSE of 1.77 kg
hm-2 (Fig. 8A-2) at Fengqiu station. The NSE values are 0.59 and 0.43 during model calibration and
validation, respectively. The R2 values are 0.64 and 0.55 in model calibration and validation process,
respectively, at Fengqiu station. The results also show that, at Luancheng station, the prediction ammonia
volatilization rates are close to the observed in both calibration (Fig. 8B-1) and validation (Fig. 8B-2). A
good simulation of the ammonia volatilization rate is achieved with an RMSE of 0.86 kg hm-2, NSE of 0.68
and R2 of 0.79 during the model calibration process. The validation also shows good results (RMSE = 0.98
kg hm-2, NSE = 0.59, and R2 = 0.73). And the RSME of ammonia volatilization rates are reduced by 31.5 %
and 30.2 %, and the R2 values are increased by 35.3 % and 36.2 %, respectively, after optimized by SCE-UA
algorithm at Fengqiu and Luancheng Station.

The results show that the ammonia volatilization rate was reduced to the lowest in mid-January and
reached the highest in early August during the wheat and maize growing season. Since the relatively high
temperature and humidity is beneficial to urea hydrolyzation, the volatilization rate gradually decreases and
it tends to be stable in several days after the applied nitrogen fertilization. Besides, nitrogen fertilizer is
generally applied to the soil surface, making it to be easily volatilized. Modeled NH3 fluxes are highly
sensitive to fertilizer practices. As indicated in Fig. 8, fertilizer application has virtually impact on NH3

fluxes. Cui et al. (2014) modeled trace gas fluxes after fertilizer application, and the results indicate that
application of fertilizers enhances NH3 fluxes. The influence of change in fertilizer application date could be
linked to two factors; change in temperature with time and the lag between fertilizer application and planting
date. Applying fertilizers ahead of planting increases NH3 fluxes since the time for nitrification and loss to
the atmosphere before crop uptake is increased.

Fig. 8 Simulated and observed values for ammonia volatilization rate (ln����t��) during the calibration (A-1, and B-1)
and validation (A-2, and B-2) at Fengqiu and Luancheng ecology station. Red arrow represents fertilization practice.
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Uncertainty intervals of simulation performance

To evaluate quantitatively the uncertainty of simulation caused by parameter uncertainty, 10,000
parameter sets are sampled with Monte Carlo method. The ARIL and P-95CI of soil nitrate concentration,
denitrification and ammonia volatilization rate are used to evaluate the uncertainty of parameters. The
predicted uncertainties of soil nitrate concentration, denitrification and ammonia volatilization rates at
Fengqiu station are presented in Fig. 9. The results show that the uncertainty ranges of the simulation results
include most observations. The average length (ARIL) at the 95 % confidence level for soil nitrate
concentration, denitrification and ammonia volatilization rate were 11.92, 0.008 and 4.26, respectively. There
are about 68 %, 86 % and 92 % of observed values for soil nitrate concentration, denitrification and
ammonia volatilization rates are inside the 95 % confidence interval in VIP model, indicating that individual
parameter uncertainty is perhaps more important than other sources of uncertainty. The parameter uncertainty
accounts for most of the deviation between the observed and the simulated.

Fig. 9 Uncertainty intervals of soil nitrate concentration (δ���), denitrification rate (���� ) and ammonia volatilization
rate (ln����t��) at Fengqiu station from 2008 to 2009. The parameter sets are 10,000, which are sampled by the Monte
Carlo method. Red arrow represents fertilization practice.

DISCUSSION

Effectiveness of sensitivity analysis methods

SA is a key step to identify sensitive parameters. It is also an effective means to comprehensively
understand how the parameters affect the model performance and provides a scientific basis for further
parameter optimization (Vrugt et al., 2003). In this study, the Morris screening method is used to screen the
parameters that have a great influence on simulations of soil nitrate concentration, denitrification and
ammonia volatilization rate. The theoretical basis of Morris is based on the fundamental effect, which
represents the model response to a particular parameter. The effect of each parameter is evaluated by the
mean � of the fundamental effects of each parameter (Campolongo et al., 2007).

The sensitivity results by the Morris method indicate that the nitrification and the decomposition of soil
organic matter are the main sources of soil nitrate. Similar to this study, it has been confirmed that
nitrification and soil organic matter decomposition are the main processes affecting soil nitrogen
concentration (Xenakis et al., 2008; Liang et al., 2016). The denitrification rate is sensitive to potential
denitrification rate and potential nitrification rate. From Michaelis-Menten equation (Equation 7), the
potential denitrification rate and soil nitrate concentration are two important factors affecting the
denitrification process, and the potential denitrification rate is the main parameter affecting the soil nitrate
concentration, which indirectly confirms the results of sensitivity analysis. According to the results of the
sensitive parameters of volatilization, it can be known that the ammonia volatilization exchange coefficient,
the maximum nitrification rate and the urea hydrolysis rate have great influence on the volatilization process.
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In the ammonia volatilization control equation, the gaseous ammonia concentration in the atmosphere is
assumed to be zero, so the ammonia volatilization exchange coefficient will significantly affect the ammonia
volatilization rate. These analysis results prove that the Morris method can effectively screen sensitive
parameters.

In general, the inability to quantitatively estimate the contribution of parameters to the output variance
and to distinguish the interactions between different parameters is the main limitations of the Morris
algorithm (Yang, 2011). The second objective of SA is to quantitatively evaluate the influence of the selected
sensitive parameters on model performance. Sobol' method is adopted to comprehensively evaluate the
sensitive parameters selected by the Morris method. Sobol’ sensitivity indices are ANOVA-like methods
which are adopted to quantitatively assess the total indices of the parameters. In this study, the sample size of
the Morris and Sobol' method are 440 and 2300, respectively. And the computational cost of the Sobol'
method is about 5 times that of the Morris method. From the results of SA in this study, the potential
nitrification rate has the greatest influence on soil nitrate concentration. Liang et al. (2016) evaluated the SA
of the WHCNS model in the NCP. And the results showed that nitrogen conversion parameters, such as
maximum nitrification rate and half-saturation constant, were important factors affecting soil nitrate
concentration, which is similar to the results of this study. It should be pointed out that the results of the SA
are only established at specific time scale and parameter range. Besides, the results of the SA depend on the
parameterization scheme of the analysis method (Confalonieria et al., 2010).

Effectiveness of SCE-UA algorithm on parameter optimization

There are few studies on optimizing parameters related to nitrogen cycle of agroecosystems model by
SCE-UA algorithm, even widely used in hydrological models (Gelleszun et al., 2017; Kan et al., 2018). After
the selected parameters are optimized by the SCE-UA algorithm, the simulation accuracy of nitrate
concentration, denitrification and ammonia volatilization rate are significantly increased.   The NSE for
soil nitrate concentration increase to 0.67 after optimized in this study. By comparing the performances of
multiple models, it was found that the NSE value of soil nitrate concentration varied from -0.81 to 0.20
(Kersebaum et al., 2007). Relatively, the expanded VIP model simulation has a higher NSE value. For the
denitrification rate, after optimized by the SCE-UA algorithm, the NSE and R2 value increase to 0.73 and
0.78, respectively in this study, which is similar to the research conclusions (Li et al 2007). The correlation
coefficient of N2O emissions varied from 0.6 to 0.71 during the winter wheat-summer maize growing season
using the DNDC model (Li et al., 2010). Those results show that the expanded VIP model has a higher
simulation accuracy. For the ammonia volatilization rate under fertilization treatments, the R2 value is 0.62
after optimized by the SCE-UA algorithm in this study. Dubache et al. (2019) used the DNDC95 model to
simulate the dynamics of ammonia volatilization rate after applicated urea. The statistical value R2 value
  varied from 0.44 to 0.59, which is lower than the results of this paper. This indicates that, after
optimized by the SCE-UA algorithm, the expanded VIP model can effectively capture the seasonal ammonia
volatilization rate patterns during the wheat and maize growing periods.

Model parameter values of different model

In this study, the potential nitrification rate and its half-saturation constant, which the parameter range of
the potential nitrification rates and half-saturation constants are 6.4 – 9.6 g m-3 day-1 and 44 – 66 g m-3 day-1,
have higher sensitivity in soil nitrate concentration, and the optimization values are 9.5 g m-3 day-1 and 44.0 g
m-3 day-1, respectively. Liang et al. (2016) studied the WHCNS model in the application of agroecosystems
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in the NCP and optimized the nitrogen conversion parameters by PEST. The potential nitrification rate and
its half-saturation constant are 10.2 g m-3 day-1 and 51.7 g m-3 day-1. The vales are slightly larger than the
results of this study. Parameter optimization is closely related to the range of parameter values. The values
  of the above two parameters in the WHCNS model are 10 – 30 g m-3 day-1 and 25 – 75 g m-3 day-1,
respectively, which are larger than the range set in this study during the optimization process. This may be
the reason why the above two parameters values are larger than this study. Besides, the objective function
and the difference of the optimization algorithm are also the reasons for the different optimized values. The
denitrification rate in the expanded VIP model is based on the NEMIS scheme (Henault and Germon, 2000),
in which the denitrification rate and its half-saturation constant are important parameters influencing the
denitrification rate, and the results optimized by the SCE-UA algorithm are 2.46 kg hm-2 day-1 and 22.3 mg
kg-1. Gu et al. (2016) simulated the denitrification rate of a maize-wheat rotation system in southwestern
China by NOEv2 model. The denitrification rate is 2.96 kg hm-2 day-1, which is similar to the value of this
study. From the results of parameter optimization, some parameter’s optimization results are unchanged.
How to set the threshold of parameter sensitivity and determine the range of values   of optimization
parameters requires further research.

CONCLUSIONS

In this study, Morris and Sobol' algorithm are used to conduct global sensitivity analysis (SA) of the
nitrogen cycle module. And the selected sensitive parameters, which are based on the previous global SA
results, are optimized by SCE-UA algorithm to improve the simulation accuracy of expanded VIP model.
Several conclusions are as follows:

According to the results of sensitivity indices, Morris and Sobol' algorithm could effectively identify
sensitive parameters of soil nitrogen cycle module at three ecology stations. And the sensitive parameters
related to soil nitrate concentration are potential nitrification rate, Michaelis constant, microbial
carbon-nitrogen ratio and slow humus carbon-nitrogen ratio; the sensitive parameters related to
denitrification rate are potential denitrification rate, Michaelis constant and N2O production rate; the
sensitive parameters for ammonia volatilization rate include ammonia volatilization exchange coefficient and
potential nitrification rate.

After optimization by SCE-UA algorithm, the expanded VIP model may effectively simulate the
dynamics of the soil nitrate concentration, denitrification and ammonia volatilization rate during the winter
wheat and summer maize growing periods. Besides, the optimized value of each parameter is within a
reasonable range. Furthermore, more than 68 % of observed values are inside the 95 % confidence interval.
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Fig. 1 Carbon and nitrogen pools and fluxes in expanded VIP model. The green and red shapes represent variables
associated with carbon (C) and nitrogen (N), respectively.
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Fig. 2 Location map of the study area and the spatial distributions of agricultural ecology experimental stations.
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Fig.3 Sensitivity analyzing results of Morris for soil nitrate concentration (A-C), denitrification rate (D-F) and
ammonia volatilization rate (G-I) at Fengqiu, Yucheng and Luancheng ecology stations. Sample size, which is
calculated by � = �� � ᢉ� � �, is 440 in this study (n number parameter and replication times r is 20).
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Fig. 4 Sensitivity analysis results of Sobol' first-order and total index for soil nitrate concentration (A and B),
denitrification rate (C and D) and ammonia volatilization rate (E and F) at Fengqiu, Yucheng and Luancheng ecology
stations. Samples size of Sobol' can be estimated by � = ��� �� � � (n represents number parameter and r represents
replication times).

Fig. 5 Sensitivity analysis results of Sobol' second-order for soil nitrate concentration, denitrification rate and
ammonia volatilization rate at Fengqiu, Yucheng and Luancheng ecology station.
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Fig. 6 Simulated and observed values for soil nitrate concentration (δ��� ) in soil surface (0-20cm) and bottom layer
(20-120cm) during the growth periods of wheat and maize at Fengqiu and Yucheng ecology station during the
calibration (A-1, A-3, B-1 and B-3) and validation (A-2, A-4, B-2 and B-4). Red arrow represents fertilization practice.
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Fig. 7 Simulated and observed values for denitrification rate ( ���� ) during the calibration (A-1, and B-1) and
validation (A-2, and B-2) at Fengqiu and Luancheng ecology station.

Fig. 8 Simulated and observed values for ammonia volatilization rate (ln����t��) during the calibration (A-1, and B-1)
and validation (A-2, and B-2) at Fengqiu and Luancheng ecology station. Red arrow represents fertilization practice.
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Fig. 9 Uncertainty intervals of soil nitrate concentration (δ���), denitrification rate (���� ) and ammonia volatilization
rate (ln����t��) at Fengqiu station from 2008 to 2009. parameter sets, which are sampled by the Monte Carlo method,
are 10,000. Red arrow represents fertilization practice.
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