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ABSTRACT 

Microbial methanogenesis is the major source of the greenhouse gas methane. It is the final step 

in the anaerobic degradation of organic matter when inorganic electron acceptors such as nitrate, 

ferric iron or sulfate have been depleted. Knowledge of the degradation pathway is important 

for creation of mechanistic models, prediction of future CH4 emission scenarios and 

development of mitigation strategies. In most terrestrial environments CH4 is produced from 

either acetate (aceticlastic methanogenesis) or H2 plus CO2 (hydrogenotrophic methanogenesis). 

Hydrogen can be replaced by other CO2-type methanogenesis, using formate, CO or alcohols 

as substrates. The ratio of these two pathways is tightly constrained by the stoichiometry of 

conversion processes, if the degradation of organic matter is complete (e.g. degradation of straw 

in rice paddies). Then, fermentation eventually results in production of acetate and H2 at a ratio, 

which allows >67% aceticlastic and <33% hydrogenotrophic methanogensis. However, acetate 

production can be favored when heterotrophic or chemolithotrophic acetogenesis is enhanced, 

and H2 production can be favored when syntrophic acetate oxidation is enhanced. This typically 

happens at low and elevated temperatures, respectively. Thus, temperature can strongly 

influence the methanogenic pathway, which may range from 100% aceticlastic methanogenesis 

at low temperatures to 100% hydrogenotrophic methanogenesis at high temperatures. However, 

if the degradation of organic matter is not complete (e.g., degradation of soil organic matter), 

the stoichiometry of fermentation is not tightly constrained, resulting for example in the 

preferential production of H2 followed by hydrogenotrophic methanogenesis. Preferential 

production of CH4 by either aceticlastic or hydrogenotrophic methanogenesis can also happen, 

if one of the methanogenic substrates is not consumed by the methanogens but is instead 

accumulating, is volatilized or is otherwise utilized. Methylotrophic methanogens, which can 

use methanol as substrate, are widespread, but it is unlikely that methanol is produced in similar 

quantities as acetate, CO2 and H2. Methylotrophic methanogenesis is important in saline 

environments, where compatible solutes are degraded to methyl compounds (trimethyl amine, 

dimethyl sulfide), which then serve as non-competitive substrates, while acetate and hydrogen 

are degraded by non-methanogenic processes, e.g., sulfate reduction. 

 

INTRODUCTION 

Methanogenesis is the final step in the anaerobic microbial degradation of organic matter 

yielding methane and carbon dioxide as end products. Anaerobic microbial methane production 

(AMMP) is the only processes that allows complete mineralization of organic matter in the 

absence of inorganic oxidants such as O2, nitrate, sulfate, ferric iron etc. In the Precambrium it 

was the almost exclusive process recycling dead biomass (Holland et al., 1986), and even in 
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our contemporary oxygenated biosphere it still accounts for about 1-2% of the total carbon 

cycle (Ehhalt, 1979). In the terrestrial biosphere AMMP nowadays occurs in aquatic 

environments, such as wetlands, flooded rice fields, and lake sediments. In addition it operates 

in the guts of many (but not all) animals (Hackstein et al., 1996) and in man-made systems like 

anaerobic digestors and landfills. These environments and process sites account for more than 

60% of the global methane budget, which amounts to about 500-600 Tg a-1 (Conrad, 2009). In 

principle, AMMP may occur wherever degradable organic matter exists under anoxic (no O2) 

conditions. 

Operation of AMMP requires a complex community of different microorganisms consisting 

of various taxonomic groups that fulfill the following functions (Zehnder, 1978; Zinder, 1993; 

Schink and Stams, 2013; Conrad, 1999): (1) hydrolysis of polymeric organic matter (e.g., 

polysaccharide, protein, lipid) to monomers, followed by fermentation of the monomers to 

simple compounds, usually short-chain fatty acids (including acetate and formate), alcohols, H2 

and CO2; (2) methanogenic conversion of acetate to CH4 and CO2; (3) methanogenic conversion 

of H2 and CO2 to CH4; (4) syntrophic conversion of short-chain fatty acids (including acetate) 

and alcohols to acetate, CO2 and H2; (5) fermentation of monomers to only acetate 

(heterotrophic acetogenesis) or conversion of H2 and CO2 to acetate (chemolithotrophic 

acetogenesis) (Fig. 1A). The functions 1, 4 and 5 are usually accomplished by Bacteria, while 

functions 2 and 3 are accomplished by Archaea. Functions 2 and 3 are termed aceticlastic and 

hydrogenotrophic methanogenesis, respectively. The ratio at which these two methanogenic 

functions contribute to total CH4 production depends on the relative net production rates of the 

two methane precursors acetate and H2. Carbon dioxide, which is also required for 

hydrogenotrophic methanogenesis, is usually not a limiting substrate in terrestrial aquatic 

environments. The relative turnover rates of acetate and H2 and the resulting ratio of aceticlastic 

and hydrogenotrophic methanogenesis are complex and depend on many different factors in 

the environment; they are subject of the present minireview. In addition, the role of 

methylotrophic methanogenesis will be discussed. 

 

 

Fig. 1 

Fig. 1  Schemes of anaerobic microbial methane production (AMMP) from organic matter (e.g., 

cellulose) by involving the following functions (numbers in squares): (1) hydrolysis of 

polymeric organic matter to monomers, followed by fermentation of the monomers to short-

chain fatty acids, H2 and CO2; (2) methanogenic conversion of acetate to CH4 and CO2; (3) 

methanogenic conversion of H2 and CO2 to CH4; (4) syntrophic conversion of short-chain fatty 

acids to acetate, CO2 and H2, or of acetate to CO2 and H2; (5) fermentation of monomers to only 

acetate (heterotrophic acetogenesis) or conversion of H2 and CO2 to acetate (chemolithotrophic 

acetogenesis). (A) Complete degradation with only negligible acetogenesis (function 5); (B) 

Compete degradation with acetogenesis (function 5) as main fermentation process; (C) 

Complete degradation with aceticlastic methanogenesis (function 2) being largely replaced by 

syntrophic acetate oxidation (function 4); (D) incomplete degradation of organic matter; (E) 

Complete degradation with accumulation of acetate; (F) Complete degradation with 

hydrogenotrophic methanogenesis (function 3) being outcompeted by iron reduction, sulfate 

reduction, etc. 

 

Why is it important to know the relative contribution of hydrogenotrophic and aceticlastic 

methanogenesis, i.e. the methanogenic pathway? Besides pure scholastic curiosity, it is the 

necessity to understand all the details of the complex methane production pathway to be able 

to create mechanistic models. Such models are required for predictions of future CH4 emission 

rates, including the emission of CH4 carbon isotopes (Bridgham et al., 2013; VanBodegom and 

Scholten, 2001; Walter and Heimann, 2000; Vavilin, 2012; Xu et al., 2015). Atmospheric 
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isotope budgets are helpful constraints for quantifying the global CH4 cycle and the carbon 

cycle in general (Brownlow et al., 2017; Tyler et al., 2007). Knowledge of process details is 

also required for the development of suitable mitigation strategies, since individual reactions 

may serve as targets to reduce CH4 emission without compromising other important ecosystem 

functions. A good example is the successful reduction of CH4 production in rumen fermentation 

without compromising animal health (Duin et al., 2016; Hristov et al., 2015).  

 

Theoretical constraints 

The complete anaerobic degradation of organic matter to CH4 plus CO2 is constrained by the 

nature of the organic material and by stoichiometry. Polysaccharides (e.g., cellulose, xylan) are 

arguably the most important class of dead plant biomass. Polysaccharides are relatively easily 

degraded by AMMP. For example, 80-90% of the rice straw that is added to flooded paddy 

soils is degraded within the first growth season (Neue and Scharpenseel, 1987).  

If we assume complete degradation by AMMP, e.g., of cellulose, we arrive at the following 

stoichiometric equations: 

 

C6H12O6 + 2 H2O   2 CH3COOH + 2 CO2 + 4 H2   (1) 

2 CH3COOH     2 CH4 + 2 CO2    (2) 

4 H2 + CO2     CH4 + 2 H2O     (3) 

C6H12O6    3 CH4 + 3 CO2    (4) 

 

Note that equation (1) encompasses all possible hydrolysis and fermentation reactions (function 

1) and also all possible syntrophic conversions (function 4). However, it assumes that 

acetogenesis (function 5) is negligible (Fig. 1A). From the stoichiometric equations (1-4) one 

can conclude that complete degradation of cellulose by AMMP results in equal amounts of CH4 

and CO2, and that of the 3 CH4 produced in total, two are derived from aceticlastic 

methanogenesis (67%) and one is derived from hydrogenotrophic methanogenesis (33%). 

Now let us assume that fermentation of cellulose occurs mainly by acetogenesis (function 

5), the other fermentation processes (functions 1 and 4) being negligible: 

 

C6H12O6    3 CH3COOH     (5) 

3 CH3COOH     3 CH4 + 3 CO2    (2) 

C6H12O6    3 CH4 + 3 CO2    (4) 

 

We notice that under these conditions CH4 is almost exclusively (100%) produced by 

aceticlastic methanogenesis (Fig. 1B).  

It is also possible that AMMP is almost exclusively hydrogenotrophic, if organic matter is 

degraded to H2 plus CO2, and no acetate is produced. However, such degradation is only weakly 

exergonic under standard conditions. Conversion of glucose to 6 CO2 and 12 H2 only gives a 

Go’ = -25 kJ. Such process is thermodynamically equivalent to the operation of syntrophic 

acetate oxidation (equation 6) converting the initially produced acetate to H2 plus CO2 (Fig. 1C): 

 

C6H12O6 + 2 H2O   2 CH3COOH + 2 CO2 + 4 H2   (1) 

2 CH3COOH + 4 H2O   4 CO2 + 8 H2     (6) 

12 H2 + CO2     3 CH4 + 6 H2O    (3) 

C6H12O6    3 CH4 + 3 CO2    (4) 

 

Hence, complete cellulose degradation by AMMP may occur via all combinations of 

hydrogenotrophic plus aceticlastic methanogenesis.  

Since syntrophic acetate oxidation is probably comparatively rare in nature (but see below), 

degradation of cellulose and of organic matter in general seems to predominantly occur by 
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aceticlastic methanogenesis. Indeed, early studies on anaerobic digestion have found AMMP 

operating at a ratio of about 67% aceticlastic and 33% hydrogenotrophic methanogenesis 

(Smith and Mah, 1966). Such ratio has also been found during early studies of anoxic rice field 

soil (Takai, 1970) and lake sediments (Cappenberg and Prins, 1974; Winfrey and Zeikus, 1979). 

Therefore, such pattern of AMMP has been considered the norm (Fig. 1A). However, in a 

former review (Conrad 1999) I have pointed out that exceptions of the general pattern of 

AMMP do exist. Since the last 20 years many more studies have been done, in particular 

including analysis of stable isotopes and molecular analyses of microbial communities, so that 

a new minireview of the regulation of the methanogenic pathways during AMMP is warranted.  

 

Regulation by temperature 

The relative contribution of hydrogenotrophic methanogenesis has been found to decrease 

with decreasing temperature, both in lake sediment (Glissmann et al., 2004; Schulz and Conrad, 

1996) and rice field soil (Fey and Conrad, 2000). This effect is expressed in the physiological 

range of about 4 to 40C. Thus, it has been found that H2-consuming chemolithotrophic 

acetogenic bacteria outcompete methanogens at low temperature (Nozhevnikova et al., 1994; 

Conrad et al., 1989; Fu et al., 2018). Hence, acetate production is stimulated at low temperature 

in methanogenic environments such as rice field soil or lake sediments, while hydrogenotrophic 

methanogens are suppressed (Nozhevnikova et al., 2007). This happens despite the fact that 

hydrogenotrophic methanogenesis is thermodynamically more favorable than 

chemolithotrophic acetogenesis (Conrad and Wetter, 1990; Kotsyurbenko et al., 2001). The 

reason why acetogenic bacteria seem to be more psychrotolerant than methanogenic archaea is 

unknown, but one might speculate that it is caused by the different membrane structures of 

Bacteria (ester lipids) versus Archaea (ether lipids) (Valentine, 2007). At low temperature ester 

lipids can be more flexible than ether lipids, which is probably advantageous for membrane 

function. Definitely, more research is necessary to understand and quantify the role of 

acetogenesis for AMMP. A second explanation for the relative increase of aceticlastic 

methanogenesis with decreasing temperature is the thermodynamics of H2 production. 

Production of H2 by syntrophic fatty acid oxidation (function 4) becomes increasingly less 

exergonic when temperature decreases, resulting in less H2 production (Chin and Conrad, 1995). 

Both adaptation of acetogens and thermodynamics of syntrophic fatty acid oxidation may result 

in production of relatively more acetate than H2 and thus enhancing aceticlastic methanogenesis 

(Fig. 1B).  

The microbial community structures responsible for AMMP are quite complex and diverse. 

There are differences in the various methanogenic environments, such as rice field soil, lake 

sediments, acidic peat, animal guts, anaerobic digestors, landfills, saline environments, etc.. 

Detailed description of the archaeal and bacterial sequences and operational taxonomic units 

are out of scope for this minireview. Briefly, the community of methanogenic archaea usually 

contains both putatively hydrogenotrophic taxa (Methanomicrobiales, Methanobacteriales, 

Methanocellales, Methanosarcinales) and putatively aceticlastic taxa (Methanosarcinaceae, 

Methanotrichaceae (formerly Methanosaetaceae, (Oren, 2014)), so that both hydrogenotrophic 

and aceticlastic methanogenesis is possible. An important exception, however, is 

methanogenesis at elevated temperature (40-50C). Rice field soils and other anoxic 

environments with methanogenic activity are frequently able to produce CH4 under moderately 

thermophilic conditions (Schulz et al., 1997; Fey et al., 2001). There are soils that contain 

moderately thermophilic aceticlastic methanogens (Wu et al., 2006). In such a soil, AMMP 

does not change with temperature increase above 40C (Liu et al., 2018) and both aceticlastic 

and hydrogenotrophic methanogenesis operate at the common ratio (Fig. 1A). However, there 

are other soils in which populations of aceticlastic methanogens vanish when they are exposed 

to elevated temperatures. These soils then produce CH4 exclusively by hydrogenotrophic 

methanogenesis (Conrad et al., 2009; Liu et al., 2018). This is possible, since thermophilic 
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syntrophic acetate oxidizers convert the initially produced acetate to H2 plus CO2 followed by 

hydrogenotrophic methanogenesis (Liu and Conrad, 2010). Syntrophic acetate oxidation is 

thermodynamically endergonic under standard conditions, but becomes increasingly less 

endergonic if temperature increases (Lee and Zinder, 1988). Syntrophic acetate oxidation is the 

only possibility to remove the intermittently accumulating acetate, which otherwise could not 

be degraded (Fig. 1C). The syntrophic acetate oxidizers were identified belonging to 

Thermoanaerobacteraceae, and possibly also to Heliobacteriaceae (Liu and Conrad, 2010; Liu 

et al., 2018; Peng et al., 2018). 

In principle such syntrophic acetate oxidizers may also operate under mesophilic conditions, 

especially since mesophilic syntrophic species (e.g., Clostridium ultunense; Syntrophaceticus 

schinkii) have been isolated (Schnürer et al., 1996; Westerholm et al., 2010). Indeed 

contribution of acetate oxidizers to AMMP has been found in some environments with low or 

moderate temperatures (Chauhan and Ogram, 2006; Nüsslein et al., 2001; Vavilin et al., 2017). 

The importance of syntrophic acetate oxidizers is obvious, if aceticlastic methanogens (e.g. 

Methanotrichaceae) are lacking (Nüsslein et al., 2001). However, if a methanogenic 

environment does contain putatively aceticlastic methanogens (which is common for most 

environments under mesophilic conditions), it is hard to understand why syntrophic acetate 

oxidation instead of aceticlastic methanogenesis should be operating. One reason may be when 

the existing aceticlastic methanogens are inhibited by environmental factors. For example, 

elevated concentrations of ammonia (Schnürer et al., 1999; Zhang et al., 2014; Müller et al., 

2016), phosphate (Conrad et al., 2000; Chin et al., 2004), or acetate (Karakashev et al., 2006; 

Petersen and Ahring, 1991) can be such factors, which inhibit the extant populations of 

aceticlastic methanogens. Then, acetate would be no longer degraded, or would be incompletely 

degraded, unless syntrophic acetate oxidizers are active (Fig. 1C). However, our knowledge of 

syntrophic acetate oxidation is still very low. 

 

Regulation by quality of organic matter 

When cellulose is degraded by AMMP, CH4 is produced by >67% aceticlastic and <33% 

hydrogenotrophic methanogenesis (Fig. 1A). However, if cellulose is replaced by chitin, which 

is an important structural material of fungi and arthropods, there is an additional acetate 

produced from each monomer (i.e., N-acetylglucosamine). Then, the contribution of aceticlastic 

methanogenesis increases to 75% (or 100% in case fermentation is by acetogenesis).  

By contrast, the relative contribution of hydrogenotrophic methanogenesis increases if the 

organic material is more reduced than saccharides, e.g. lipids. For simplicity, let us assume 

degradation by AMMP of an alkane hydrocarbon, e.g. hexane: 

 

C6H14 + 6 H2O    3 CH3COOH + 7 H2    (5) 

3 CH3COOH     3 CH4 + 3 CO2    (2) 

7 H2 + 1.75 CO2    1.75 CH4 + 3.5 H2O    (3) 

C6H14 + 2.5 H2O   4.75 CH4 + 1.25 CO2    (6) 

 

In degradation of hexane compared to cellulose, AMMP would result in the production of much 

more CH4 than CO2. However, AMMP would still be dominated (67%) by aceticlastic 

methanogenesis. The stoichiometries above show that lipids or other reduced organic 

compounds would only marginally affect the methanogenic pathways, which would still be 

close to that shown for cellulose degradation in Fig.1A.  Hence, it is reasonable to conclude that 

CH4 production occurs predominantly (>67%) by aceticlastic methanogesis, provided the 

original organic material is degraded to completion and syntrophic acetate oxidation is 

negligible.  

Note, however, that the emphasis has so far been on the complete degradation of organic 

matter. If we assume, by contrast, that organic matter is not completely degraded, 
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stoichiometries may be completely different. Simple aromatic compounds, such as 

phenylacetate, may be degraded incompletely yielding benzoate, CO2 and H2, but yielding no 

acetate (Harwood et al., 1998): 

 

C8H7O2
- + 2 H2O   C7H5O2

-   + CO2 + 3 H2   (7) 

3 H2 + 0.75 CO2    0.75 CH4 + 1.5 H2O    (3) 

C8H7O2
- + 0.5 H2O   C7H5O2

-   + 0.75 CH4 + 0.25 CO2  (8) 

 

Such degradation process produces CH4 exclusively by hydrogenotrophic methanogenesis. 

Phenylacetate (and phenylpropionate) is indeed a minor product of the AMMP from rice straw 

(Glissmann et al., 2005) and peat (Kotsyurbenko et al., 2004). More importantly, however, there 

are plenty of other complex organic substances in soil or sediment that might possibly be 

degraded in a similar way, thus greatly enhancing the contribution of hydrogenotrophic 

methanogenesis to AMMP (Fig. 1D). Such processes likely explain the observation that CH4 

production in many lake sediments is produced by the contribution of >50% hydrogenotrophic 

methanogenesis (Conrad et al., 2010; Conrad et al., 2011; Ji et al., 2016). Lake sediments or 

accumulating peat layers are likely sites for such processes, since they are formed by a 

sedimentation process and are not much disturbed. There, only the most labile part of the freshly 

settled organic matter is completely degraded, while the less labile one accumulates in sediment 

layers that increase in age with depth (Fig. 1D). Hence, deeper layers of organic matter are 

increasingly recalcitrant for degradation and support increasingly less CH4 production, albeit 

with an increasing contribution of hydrogenotrophic methanogenesis (Conrad et al., 2010; Liu 

et al., 2017; Vaughn et al., 2016; Hodgkins et al., 2014; Chan et al., 2005).  

Rice field soils, by contrast, are regularly ploughed and fresh input of rice straw is degraded 

by 80-90% in the first season (Neue and Scharpenseel, 1987). In such environment, most of the 

AMMP occurs by the normal mixture of aceticlastic and hydrogenotrophic methanogenesis (Fig. 

1A). Interestingly, even under these conditions does the relative contribution of 

hydrogenotrophic methanogenesis increase when most (70%) of the rice straw has been 

degraded, indicating that increasing recalcitrance of organic matter results in increasing 

contribution of hydrogenotrophic methanogenesis (Ji et al., 2018a).  

The methanogenic archaeal communities of environments with incomplete conversion of 

organic substances and enhanced hydrogenotrophic methanogenesis generally consist of both 

hydrogenotrophic and aceticlastic methanogenic archaea, albeit hydrogenotrophic ones may be 

enhanced relatively to the aceticlastic ones (Chan et al., 2005; Liu et al., 2017; Mondav et al., 

2014). However, the coexistence of both indicates that the regulation of the pathway of 

methanogenesis mainly occurs by flux control rather than by control of the functional 

methanogenic populations. 

 

Alternative fates of methane precursors 

If AMMP proceeds as theoretically expected (compare Fig. 1A), the ratio of 

hydrogenotrophic and aceticlastic methanogenesis may nevertheless change if either H2 or 

acetate are consumed or otherwise diverted before they are converted by methanogens (Fig. 

1E). This typically happens in animal guts, where acetate (and other short-chain fatty acids) is 

resorbed as a food source, so that methanogens are left with H2 as methane precursor (Hungate, 

1967). Similarly, acetate may be consumed in microbial or algal mats as a carbon source, so 

that the contribution of hydrogenotrophic methanogenesis increases (Sandbeck and Ward, 

1981). Alternatively, H2 production and hydrogenotrophic methanogenesis may be stimulated 

by light-driven processes (Lee et al., 2014). Vice versa, H2 may be lost from the environment 

thus enhancing the contribution of aceticlastic methanogenesis. Since H2 is a gas with low 

solubility, it may easily evade, especially if it is produced close to the soil-atmosphere interface, 
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such as in microbial mats (Hoffmann et al., 2015) or is ventilated by ebullition or plant gas 

vascular systems (Schütz et al., 1988). 

The ratio of hydrogenotrophic and aceticlastic methanogenesis may also be affected by 

temporal change in ecosystem function, such as reported for some northern peatlands. There, 

CH4 was predominantly produced by hydrogenotrophic methanogenesis while acetate was not 

consumed at all and accumulated during the season with high water table (Duddleston et al., 

2002)(Fig. 1E). This was due to a lack of aceticlastic methanogens (Rooney-Varga et al., 2007). 

However, when the water table dropped at the end of season so that O2 could penetrate into the 

formerly methanogenic peat layers, acetate was oxidized by microorganisms using O2 or ferric 

iron as oxidants (Duddleston et al., 2002). Such temporal changes in environmental conditions 

may occur in many different ecosystems, e.g., upon water management in rice fields (Krüger et 

al., 2002; Zhang et al., 2013), so that alternative fates of methane precursors can change the 

pathway of CH4 production.  

In particular, it may be important to consider the temporary or local effects of inorganic 

oxidants (O2, nitrate, sulfate, ferric iron, etc.), which allow oxidation of methanogenic 

substrates to CO2 instead of reduction to CH4 (Fig. 1F). Such oxidation reactions may be 

selective for either H2 (such as in Fig. 1F) or acetate and thus, specifically suppress 

hydrogenotrophic or aceticlastic methanogenesis (Klüber and Conrad, 1998; Achtnich et al., 

1995; Conrad, 1999; Scheid et al., 2003). While inorganic oxidants are normally unavailable if 

methanogenic environments have been under reducing conditions for several days or weeks, 

they can be relevant electron acceptors in environments with local or temporal input of oxygen, 

for example provided by plant ventilation or water table fluctuations (Beckmann and Lloyd, 

2001; Knorr and Blodau, 2009). Inorganic oxidants (e.g., sulfate) can be plentiful in marine and 

other saline environments, in which AMMP is a niche process compared to microbial sulfate 

reduction (Mountfort et al., 1980; Crill and Martens, 1986). There, AMMP may be restricted to 

the degradation of compatible solutes coupled to methylotrophic methanogenesis (see below). 

 

Regulation by pH 

For complete degradation of organic matter in the absence of inorganic oxidants AMMP 

must work at any pH. The theoretical constraints for complete degradation are the same as 

outlined above. However, it is feasible that degradation of organic matter is incomplete at pH 

values that largely deviate from neutrality. The coincidence of accumulating peat layers and 

acid pH values is obvious. Therefore, it has been argued that imbalances in microbial 

fermentation processes may contribute to acidification (Zeikus, 1983). Indeed anaerobic H2 

turnover was found to decrease with decreasing pH of lake sediments (Goodwin et al., 1988) 

indicating that hydrogenotrophic methanogenesis may become increasingly substrate limited. 

Although aceticlastic methanogenesis is sometimes the almost exclusive CH4 production 

process in acidic lake sediments (Goodwin and Zeikus, 1987; Phelps and Zeikus, 1984), this 

may also be explained by acetogenic fermentation (Fig. 1B). In fact, most studies found the 

existence of both hydrogenotrophic and aceticlastic methanogenic archaea in sediments of 

acidic lakes, rivers, peat mires or soils (Horn et al., 2003; Chan et al., 2002; Sanz et al., 2011; 

Kotsyurbenko et al., 2004; Metje and Frenzel, 2007; Barbier et al., 2012; Liebner et al., 2015; 

Cadillo-Quiroz et al., 2006; Basiliko et al., 2003). However, aceticlastic methanogens may be 

absent or inactive in some peat environments resulting in accumulation of acetate (Metje and 

Frenzel, 2005; Duddleston et al., 2002). With these exceptions, AMMP in acidic environments 

is not basically different from AMMP in neutral ones. Hydrogenotrophic methanogenesis, in 

particular, is apparently not impeded by low pH. In methanogenic rice field soils CH4 

production decreases if the soil pH is artificially decreased (Wang et al., 1993; Jugsujinda et al., 

1995). It is well known that CH4 production in acid sulfate soils is strongly suppressed, albeit 

it is not clear whether this suppression is mainly due to low pH or high concentrations of sulfate 
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and ferric iron, which may serve as alternative electron acceptors in the anaerobic degradation 

organic matter (Yao et al., 1999).  

Methanogenesis can be found in alkaline environments, which usually are haloalkaline 

(Sorokin et al., 2015a; Oremland et al., 1982; Antony et al., 2012). The active methanogens 

apparently belong to the group of methylotrophic methanogens, which are commonly found in 

saline environments and use so-called “non-competitive” methanogenic substrates such as 

methanol, methylamines and methyl sulfides (see below). However, hydrogenotrophic 

alkaliphilic methanogens have also been isolated (Sorokin et al., 2015b).  

In summary, there is presently no evidence that pH by itself regulates the relative 

contribution of hydrogenotrophic versus aceticlastic methanogenesis in terrestrial envrionments. 

It is probably rather the presence of alternative oxidants (e.g., sulfate in acid precipitation 

(Gauci et al., 2008)) that affects methanogenesis. 

 

Other CO2-type methanogenesis 

The so-called hydrogenotrophic pathway does not necessarily depend on the provision of H2 

as electron donor. Many hydrogenotrophic methanogens can as well utilize formate, CO or even 

alcohols (ethanol, 2-propanol, etc.) as substrates (Widdel, 1986; Daniels et al., 1977). Ethanol 

(and other alcohols) is only partially oxidized resulting in the production of acetate, which is 

subsequently utilized by aceticlastic methanogens (Fig. 2A). Formate and CO are oxidized to 

CO2, while the electrons are used to reduce CO2 to CH4. Therefore, all these physiological types 

can be summarized as CO2-type methanogens, contrasting acetate-type methanogens and 

methylated C1 compounds-type methanogens (Liu and Whitman, 2008). Ethanol and 2-

propanol, for example can be important methanogenic substrates in peat (Metje and Frenzel, 

2005) and pond sediments (Martins et al., 2017). It is not easy to distinguish direct utilization 

by an alcohol-oxidizing methanogen and syntrophic alcohol oxidation coupled to 

hydrogenotrophic methanogenesis (Fig. 2A). For the sake of differentiating the 

hydrogenotrophic methanogenic pathway from aceticlastic and methylotrophic pathways, it 

actually does not matter how CO2 is reduced, since alcohols (or formate, CO) are like H2 normal 

intermediates in fermentative AMMP, and are summarily included in equation (1). For the 

differentiation of hydrogenotrophic versus aceticlastic methanogenic pathways it also does not 

matter whether the methanogens consume the fermentatively produced H2 in dissolved form, 

by interspecies-H2-transfer (or interspecies-formate-transfer), or by direct interspecies electron 

transfer (DIET) (Bryant et al., 1967; Conrad et al., 1985; Thiele and Zeikus, 1988; Rotaru et al., 

2012). 

 

Fig. 2 

Fig. 2: Schemes of anaerobic microbial methane production (AMMP) from organic matter (e.g., 

polysaccharides) by involving the following additional functions: (A) methanogenic conversion 

of alcohols (function 6); (B) methanogenesis from glycolysis (function 7). 

 

Another intriguing idea would be the existence of glycolytic methanogens, i.e. a 

methanogenic species, which can utilize glucose as substrate and convert it to CH4 and CO2, as 

shown in equation (4). Thus, the microbial community accomplishing AMMP would be 

replaced by only one organism, which would do everything (Fig. 2B). This idea is presently 

pure speculation, but it is not completely unlikely, since some methanogens can metabolize 

glycogen, which they produce as storage material. For example, Methanosarcina activorans 

displays vigorous gluconeogenesis and glycolysis (Santiago-Martinez et al., 2016). 

Metatranscriptome analyses of methanogenic paddy soil showed that Methanosarcinaceae 

transcribe glucosyl hydrolases involved in polymer breakdown (Peng et al., 2018). Hence, why 

should species of methanogens not be able to utilize glucose or polysaccharides entirely without 

sharing the energy content with other members of a complex microbial community? Theory 
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suggests that microbes can optimize either rate or yield of ATP production (Pfeiffer et al., 2001). 

While high ATP yields would favor complete degradation (glucose to CH4), high ATP rates are 

achieved by reducing the length of the pathway (e.g, acetate to CH4). Our procedures for 

enrichment and isolation of microbes are all selecting for fast growing species. However, slow 

growing species with optimized ATP yields may be found in biofilms or aggregates (Kreft, 

2004). Such microbes may have not yet been isolated because of technical reasons. The 

completely nitrifying bacteria (Comammox), which have recently been isolated and described 

(Kits et al., 2017), may be considered as an analogue for putatively glycolytic methanogens. 

Both accomplish complete conversion of a substrate, which is normally converted by a chain 

of processes divided to several different microbes. However, existence of putatively glycolytic 

methanogens would result in the same stoichiometry of polysaccharide degradation as shown 

in equations (1-4), albeit being catalyzed in one organism instead of a community (Fig. 2B). 

The percentage of 33% hydrogenotrophic and 67% aceticlastic methanogenesis would be the 

same, since glycolysis would eventually result in the production of 2 acetyl-CoA and 4 

hydrogen equivalents, analogous to equation (1) and these glycolytic products would be 

converted by the methanogenic machinery to CH4 analogous to equations (2) and (3).  

 

Role of methylotrophic methanogenesis 

Whereas aceticlastic and hydrogenotrophic methanogens are required for AMMP in almost 

all anoxic methanogenic environments, the role of methylotrophic methanogenesis is not 

completely clear. Methylotrophic methanogens all belong to the family Methanosarcinaceae, 

except the genus Methanosphaera, which belongs to the order Methanobacteriales (Liu and 

Whitman, 2008). Methylotrophic methanogenesis is the conversion of a methyl compound to 

CH4 plus CO2, e.g. methanol, which is disproportionated to CH4 and CO2: 

 

4 CH3OH    CO2 + 2 H2O + 3 CH4   (9) 

 

Methanol is a product of pectin degradation and can be degraded by methanogens (Schink and 

Zeikus, 1980). However, pectin turnover in lake sediment is only slow (Schink and Zeikus, 

1982), and methanol has been found to be only a marginal methanogenic precursor (Lovley and 

Klug, 1983). The same is true for anoxic rice field soil (Conrad and Claus, 2005). Since small 

amounts of methanol may also be produced from xylan (Rosell and Svensson, 1975) and lignin 

(Ander et al., 1985), methanol-driven methanogenesis cannot be completely dismissed (Fig. 

3A). However, it may primarily be important for special environments, such as methanogenic 

wetwood, where wood pectin is degraded by AMMP (Schink et al., 1981). Peat soil from the 

Zoige wetlands was also claimed to produce CH4 mainly from methanol (Jiang et al., 2010). 

However, even if pectin (or xylan) is the major polymer driving methanogenesis, AMMP would 

not only result in the production of methanol, but even more in the production of 

monosaccharides (e.g., gluconic acid, galacturonic acid) that are further degraded to acetate, 

CO2 and H2. Each of these sugar acid molecules would result in the production of two molecules 

of acetate, which are methanogenically converted to two molecules of CH4. Hence, pectin 

would stimulate methanogenesis from acetate more from methanol (Fig. 3A).  

 

Fig. 3 

Fig. 3  Schemes of anaerobic microbial methane production (AMMP) from organic matter (e.g., 

pectin, xylan) involving methylotrophic methanogenesis (function 8): (A) General degradation 

scheme involving CH4 production from methanol and trimethylamine (TMA); (B) methanol-

dependent methanogenesis and resorption of acetate (e.g., in gut systems); (C) TMA-dependent 

methanogenesis and predominant utilization of acetate and H2 by sulfate reduction.  
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More recently, methanol-degrading methanogens of the order Methanomassiliicoccales 

have been described (Paul et al., 2012; Dridi et al., 2012). These methanogens reduce methanol 

with H2: 

 

CH3OH + H2    CH4 + H2O     (10) 

 

These methanogens occur in animal gut systems, but have also frequently been detected in other 

anoxic environments such as fens (Söllinger et al., 2016), mangrove sediments (Li et al., 2016), 

digesters (Wilkins et al., 2015), and anoxic paddy soil (Ji et al., 2018b). 

Methanomassiliicoccales are probably even more widespread, since they have only recently 

been added to sequence data bases and up to then have probably been recorded as 

Thermoplasmatales-related Euryarchaeota. Their role in carbon flux is presently unknown. In 

gut systems they may play an important role, since acetate is resorbed thus rendering methanol 

a relatively important methanogenic precursor (Fig. 3B). However, the relative contribution of 

methylotrophic versus hydrogenotrophic methanogenesis in gut systems is presently not known 

(Söllinger et al., 2018). The genus Methanosphaera can also reduce methanol with H2 to CH4 

(Liu and Whitman, 2008). Recently, genomic information indicate that this type of physiology 

may also occur in several archaeal candidate taxa, e.g. Verstraetearchaeota (Vanwonterghem 

et al., 2016).   

Methylamines, trimethylamine (TMA) in particular, may be important methanogenic 

substrates in saline environments, where biota produce glycine betaine as osmolyte. Betaine is 

fermented yielding TMA, which is a methanogenic substrate (Hippe et al., 1979; King, 1984a). 

Since TMA seems to be a substrate that is better degraded by methanogens than by sulfate 

reducers, TMA is a so-called non-competitive methanogenic substrate (Oremland and Polcin, 

1982; King, 1984b). Thus, it was found that methylotrophic methanogenesis is responsible for 

much of the CH4 production in anoxic marine environments despite the presence of active 

sulfate reducers. These sulfate reducers were successfully competing for H2 and acetate, but not 

for methyl compounds like TMA, which was exclusively degraded by methanogens (Fig. 3C). 

Similarly, CH4 production seems to be caused by methylotrophic methanogens in many saline 

environments, e.g. saline lake sediments on the Tibetan Plateau (Liu et al., 2016), hypersaline 

microbial mats (Smith et al., 2008), and other hypersaline environments (Oren, 1990; Zhuang 

et al., 2016; Sorokin et al., 2017). 

Methanethiol or dimethylsulfide can also serve as methanogenic substrates (Zinder and 

Brock, 1978; Ni and Boone, 1991; Lomans et al., 1999). Like methylamines, these 

methylsulfides are produced from the osmolyte dimethyl sulfoniopropionate (Kiene and 

Visscher, 1987). Dimethyl sulfide may serve a similar role as trimethylamine. However, 

degradation of dimethyl sulfide happens not only in marine (Zhuang et al., 2018; VanderMaarel 

and Hansen, 1997) but also in freshwater environments (Lomans et al., 1997).  

 

Conclusions and outlook 

Anaerobic degradation of organic matter by soil microbial communities eventually results 

in the production of CH4 by aceticlastic and hydrogenotrophic methanogenesis. These two 

major pathways of microbial CH4 production may contribute to various percentages ranging 

from zero to 100%. The extent of their contributions depend on whether the available organic 

matter is degraded more or less completely (such as straw in paddy fields) or is only partially 

degraded (such as soil or sediment organic matter). The complete degradation of organic matter 

is tightly constrained by the stoichiometry of the fermentation reactions, which result in the 

production of acetate and H2 at a ratio that consequently gives rise to CH4 production by >67% 

aceticlastic and <33% hydrogenotrophic methanogenesis. This ratio is similar for various 

organic substrates, provided they are completely degraded and the fermentation products are 

exclusively consumed by fermentation and methanogenesis, and are not accumulated, absorbed, 
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volatilized or consumed by oxidation reactions coupled to the reduction of inorganic electron 

acceptors such as ferric iron or sulfate. However, since environmental conditions affect the 

thermodynamics and kinetics of the individual reactions, and also affect population dynamics 

and the structuring of the entire microbial community, fermentation reactions can be pushed 

into production of surplus acetate or H2. Thus, temperature can control the methanogenic 

pathways by influencing the thermodynamics of fermentative production of H2 and acetate, and 

by affecting the composition of the microbial communities. While acetogenesis followed by 

aceticlastic methanogenesis is favored at low temperature, syntrophic acetate oxidation 

followed by hydrogenotrophic methanogenesis is favored at high temperature.  

It is remarkable that the temperature control of the methanogenic pathways primarily 

depends on the activity of acetate-producing and acetate-oxidizing bacteria, which thus play a 

key role for the regulation of AMMP. The group of acetate-producing microorganisms is termed 

acetogenic or homoacetogenic bacteria, since they produce acetate as virtually sole 

fermentation product using the Wood-Ljungdahl pathway (Drake, 1994). Those, which produce 

acetate chemolithotrophically from H2 and CO2 (at least some of them), can reverse the direction 

of the process if thermodynamic conditions allow and then, oxidize acetate to H2 plus CO2 

(Zinder, 1994). Under such conditions, they act as syntrophic acetate-oxidizers. Hence, control 

of the methanogenic pathways depends to a large extent on the activity of acetogens/acetotrophs 

operating the Wood-Ljungdahl pathway. Unfortunately, this conclusion is primarily based on 

our knowledge of the regulation of the relative contribution of aceticlastic versus 

hydrogenotrophic methanogenic pathways, which is indirect evidence. Acetogenic bacteria are 

widespread in nature and can display remarkable activity, such as in the litter layer of forest 

soil (Küsel and Drake, 1994), the gut of termites (Breznak and Switzer, 1986), or the deep 

biosphere (Lever, 2012). However, the quantification of their contribution to the anaerobic 

degradation of organic matter (e.g., AMMP) in-situ is very difficult and has so far not been 

achieved unequivocally (Hädrich et al., 2012; Fu et al., 2018; Liu and Conrad, 2011; Hoehler 

et al., 1999). Understanding the ecology of acetogens/acetotrophs is certainly an important 

objective for future research. 

The role of methylotrophic methanogenesis in nature is also an interesting research question. 

Methylotrophic methanogenesis is probably important in highly saline environments, where 

biota form large amounts of compatible solutes that are anaerobically degraded to methyl 

compounds. Although this conclusion has never been questioned, there are only few studies 

quantifying the carbon flow under in-situ conditions (King, 1984a).  

The role of methanol-dependent methanogenesis under field conditions is completely 

unclear. Recent studies indicate a remarkable diversity of potentially methanol-reducing 

methanogens across several archaeal classes (Vanwonterghem et al., 2016; Nobu et al., 2016; 

Evans et al., 2015). However, to be important for carbon flow, production rates of methanol 

must be comparable to those of H2 and acetate to allow significant contribution to total CH4 

production. Since concentrations of methanol are usually below the detection limit, methanol 

is not likely to play a major role for CH4 production. However, there are only very few studies 

addressing methylotrophic methanogenesis to total CH4 production in non-extreme soil and 

aquatic environments (Lovley and Klug, 1983; Conrad and Claus, 2005).  
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Figure legends 

 

Fig. 1: Schemes of anaerobic microbial methane production (AMMP) from organic matter (e.g., 

cellulose) by involving the following functions (numbers in squares): (1) hydrolysis of 

polymeric organic matter to monomers, followed by fermentation of the monomers to short-

chain fatty acids, H2 and CO2; (2) methanogenic conversion of acetate to CH4 and CO2; (3) 

methanogenic conversion of H2 and CO2 to CH4; (4) syntrophic conversion of short-chain 

fatty acids to acetate, CO2 and H2, or of acetate to CO2 and H2; (5) fermentation of monomers 

to only acetate (heterotrophic acetogenesis) or conversion of H2 and CO2 to acetate 

(chemolithotrophic acetogenesis). (A) Complete degradation with only negligible 

acetogenesis (function 5); (B) Compete degradation with acetogenesis (function 5) as main 

fermentation process; (C) Complete degradation with aceticlastic methanogenesis (function 

2) being largely replaced by syntrophic acetate oxidation (function 4); (D) incomplete 

degradation of organic matter; (E) Complete degradation with accumulation of acetate; (F) 

Complete degradation with hydrogenotrophic methanogenesis (function 3) being 

outcompeted by iron reduction, sulfate reduction, etc. 

 

Fig. 2: Schemes of anaerobic microbial methane production (AMMP) from organic matter (e.g., 

polysaccharides) by involving the following additional functions: (A) methanogenic 

conversion of alcohols (function 6); (B) methanogenesis from glycolysis (function 7). 

 

Fig. 3: Schemes of anaerobic microbial methane production (AMMP) from organic matter (e.g., 

pectin, xylan) involving methylotrophic methanogenesis (function 8): (A) General 

degradation scheme involving CH4 production from methanol and trimethylamine (TMA); 

(B) methanol-dependent methanogenesis and resorption of acetate (e.g., in gut systems); (C) 

TMA-dependent methanogenesis and predominant utilization of acetate and H2 by sulfate 

reduction.  
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