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ABSTRACT 

The Soil Land Inference Model (SoLIM) primarily proposed primarily by Zhu et al. (1997. Soil Science 

Society of America Journal, 61(2), 523–533) has been widely applied to digital soil mapping. Based on the 

assumption that soil property value at a location of interest will be more similar to that of a given soil sample 

when the environmental condition at the location of interest is more similar to that at the location from which 

the sample was taken, SoLIM estimates the soil property value of location of interest by using the soil 

property values of known samples weighted by the similarity between those samples and the location of 

interest in terms of an attribute domain of environmental conditions. However, current SoLIM procedure 

ignores information about the spatial distances between the location of interest and the soil sample locations. 

In this study, we propose a new method (SoLIM-IDW) which combines this spatial distance information into 

the SoLIM procedure to derive a soil property map. The proposed SoLIM-IDW method is based on an 

assumption that soil property value at a location of interest will be more similar to that of a known sample 

both when the environmental conditions are more similar and when the distance between the location of 

interest and the sample location is shorter. Our evaluation experiments on A-horizon soil organic matter 

mapping in two study areas with independent evaluation samples show that the proposed SoLIM-IDW 

method can get lower prediction errors than the original SoLIM method, multiple linear regression, 

geographically weighted regression, and regression-kriging with same modeling points. Future work mainly 

includes the determination of optimal power parameter values, or how to set the parameter properly under 

different application contexts. 
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INTRODUCTION 

 

Digital soil mapping (or predictive soil mapping) is an efficient way to create predictive soil maps by 

developing a numerical model of the relationships between environmental covariates and soil in an area and 

then applying that model to a geographical database (McBratney et al., 2003; Minasny and McBratney, 

2016). Although the numerical model of these relationships is often developed in a statistical or geostatistical 

manner (such as regression and kriging) (Brus and de Gruijter, 1993; Fotheringham et al., 1996; Goovaerts, 

1999; Heuvelink and Pebesma, 1999; McBratney et al., 2003; Hengl et al., 2007; Lark, 2012), such a method 

requires a large number of soil samples which sufficiently represent the soil-environment relationship across 

the study area (Zhu et al., 2018). This means large budget requirement and highly labor-intensive field work. 

Meanwhile, such a method requires the represented soil-environment relationship to be stable across the 

entire study area (or, the stationarity assumption in geostatistics), which often cannot be met due to the 

complexity of soil distribution (Zhu et al., 2018).  

The Soil Land Inference Model (SoLIM) method was originally proposed by Zhu et al. (1997) to 

overcome above mentioned disadvantages of statistical or geostatistical models for digital soil mapping (Zhu 

et al., 2018). SoLIM has been successfully applied to predictive soil mapping using environmental covariates 

related to soil property distribution and a few purposive samples or even ad-hoc soil samples with very 

limited representativeness of the soil-environment relationship in a study area (Zhu et al., 2010; Qin et al., 

2010; Zhu et al., 2015). Based on the assumption that soil property value at a location of interest will be 

more similar to that of a given soil sample when the environmental condition at the location of interest is 

more similar to that at the location from which the sample was taken, SoLIM estimates the soil property 

value of location of interest by using the soil property values of known samples weighted by the similarity 

between those samples and the location of interest in terms of an attribute domain of environmental 

conditions (such as slope gradient, topographic wetness index, and parent material). 

  𝑉𝑖 =
∑ (𝑆𝑖,𝑘×𝑉𝑘)𝑁

𝑘=1

∑ 𝑆𝑖,𝑘
𝑁
𝑘=1

      (1) 

where 𝑉𝑖 is the soil property value predicted at the location of interest 𝑖, 𝑉𝑘 is the soil property value of the 

soil sample 𝑘, 𝑁 is the count of soil samples, and 𝑆𝑖,𝑘 is the similarity in terms of environmental conditions 

between 𝑖 and 𝑘, which is normally computed to be the minimum among the individual similarities in terms 

of individual environmental attributes related to the spatial variation of soil (Zhu and Band, 1994). The 

estimation uncertainty at each location can also be provided by SoLIM (Zhu et al., 1997), which is useful for 

directing the subsequent application of the resultant soil property map (e.g., Li et al., 2016; Zhang et al., 

2016).  

However, information regarding the spatial distances between the location of interest and the soil 

sample locations is ignored in the current SoLIM inference method, which estimates soil property values at 

each interest location based on the attribute domain of environmental covariates. This spatial distance is 

often important to consider in spatial analysis and mapping of geographical phenomena, and Tobler’s first 

law of geography has been widely accepted to highlight this point (Tobler, 1970; De Smith et al., 2007). 

Could the spatial distances between locations of interest and soil sample locations be considered in SoLIM 

inference to improve the accuracy of the resultant soil property map? In this paper, we study this issue and 

explore potential improvements which can be made by taking into consideration the spatial distances 

between locations of interest and soil sample locations in SoLIM inference. 
 

MATERIALS AND METHODS 

 

Basic idea 

 

In order to revise the current SoLIM method so that it considers the spatial distances between each 

location of interest and soil sample locations during predictive soil property mapping, we first propose the 

following assumption: soil property value at a location of interest will be more similar to that of a known 

sample both when the environmental conditions are more similar and when the distance between the location 

of interest and the sample location is shorter. This assumption is a simple and reasonable extension of the 

assumption used in current SoLIM, combined with Tobler’s first law of geography. 

Note that one classic method of spatial estimation at unvisited locations from a set of value-known 

locations is the inverse distance weighting (IDW), which is based purely on Tobler’s first law of geography 

and has no additional requirements regarding either the spatial distribution or count of sample locations. This 
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way of considering the spatial distance between locations of interest and sample locations could be combined 

with the current SoLIM inference. Such a combination can result in a revised SoLIM (so-called SoLIM-IDW) 

which is based on the assumption proposed above and can take into consideration the spatial distances 

between locations of interest and soil sample locations, thus eliminating the problem of ignoring spatial 

distance information in the current SoLIM inference method.  

 
Design of the SoLIM-IDW method 

 

In accordance with the basic idea above, the SoLIM-IDW method proposed in this paper is designed to 

revise current SoLIM inference to use the following equation: 

𝑉𝑖 =
∑ (𝐷𝑖,𝑘×𝑆𝑖,𝑘×𝑉𝑘)𝑁

𝑘=1

∑ (𝐷𝑖,𝑘×𝑆𝑖,𝑘
𝑁
𝑘=1 )

 , 𝐷𝑖,𝑘 = 1 (𝑑𝑖,𝑘)
𝒓

⁄    (2) 

where 𝑑𝑖,𝑘 is the distance between the location of interest 𝑖 and the soil sample location 𝑘 (𝑘 = 1. . 𝑁), 𝐷𝑖,𝑘 is 

the weight function based on 𝑑𝑖,𝑘 (as what is normally used in IDW), and 𝑟 is the power parameter which is a 

positive real number selected according to the principle of inverse distance weighting. 𝑆𝑖,𝑘 (i.e., the similarity 

in terms of environmental conditions between 𝑖 and 𝑘) is the same as that used in current SoLIM inference. 

Thus, the original SoLIM inference function (Eq. (1)) is the special case of Eq. (2) where 𝑟 = 0. 

 

Study areas and data 
 

The proposed method was evaluated by application to two study areas (Fig. 1). The first is Heshan farm 

at a watershed scale (about 60 km2), and the second is Xuancheng county at a regional scale (about 5900 

km2). 

 

Fig.1（见文末） 

Fig. 1  Maps of study areas. a) the Heshan farm case; b) the Xuanchen county case. 

 

Heshan case 
 

The Heshan farm in the Heilongjiang province of northeastern China has with very low relief. This 

study area (about 60 km2) has a total relief of about 100 m and an average slope gradient of about 2°. The 

parent materials are mainly silt loam loess and fluvial deposits in the valley. In the Heshan farm, main types 

of soils at subgroup level in the Chinese soil taxonomy system (Chinese Soil Taxonomy Research Group 

2001) include Mollic Bori-Udic Cambosols, Typic Hapli-Udic Isohumosols, Typic Bori-Udic Cambosols, 

Lithic Udi-Orthic Primosols, Pachic Stagni-Udic Isohumosols, and Fibric Histic-Typic Haplic Stagnic 

Gleyosols (Zhu et al., 2010). Soybeans and wheat are the main agricultural products in this area, which has 

been cultivated for more than 40 years. 

The proposed method was used for digital soil mapping of A-horizon soil organic matter (SOM) content 

(%) in this area. Four environmental variables (i.e., slope gradient, profile curvature, horizontal curvature, 

and topographic wetness index) were adopted and calculated based on a DEM with a resolution of 10 m, as 

was done in the application of SoLIM in same area (Zhu et al., 2010). 

In this case, a total of 39 points were used as modeling samples, including 29 points from an integrative 

hierarchical stepwise sampling method (Yang et al., 2013) and 10 points from subjective sampling at summit, 

steeper slope, and valley locations (Zhu et al., 2010; Yang et al., 2013). Another 44 points from a regular 

sampling grid (1100 m * 740 m) were used as independent evaluation samples (Fig. 1a). SOM content of 

each soil sample was measured by the Walkley–Black wet oxidation method (Nelson and Sommers, 1982). 

 

Xuancheng case 
 

The Xuancheng county in China’s Anhui province is about 5900 km2 and has a total relief of about 1058 

m and an average slope gradient of about 4°. The northwestern part of this area is mainly low relief, while 

other parts are mainly mountainous. The parent materials in this area are complex, including Quaternary 

clay-silt-gravel, sandstone, shale, conglomerate, pyroclastic rocks, limestone, granite and granodiorite (Yang 

et al., 2017). There are five main soil orders in this area, i.e., Semi-hydromorphic soils, Primitive soils, 

Anthropogenic soils, Eluvial soils, and Ferro-allitic soils (National Soil Survey Office, 1992). 
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The proposed method was used for digital soil mapping of A-horizon soil organic carbon (SOC) (g kg-1) 

in this area. The environmental variables used in this case include slope gradient, profile curvature, 

horizontal curvature, topographic wetness index, annual average precipitation, annual average temperature, 

and parent material (Yang et al., 2017). All environmental variables have a resolution of 90 m, where 

topographic attributes were calculated based on the SRTM DEM. 

In this case, 59 points from a multi-grade representative sampling method (Yang et al., 2017) were used 

as modeling samples, while another 58 points from a regular sampling grid of 10 km * 10 km were used as 

independent evaluation samples (Fig. 1b). SOC of soil samples were measured by the dichromate oxidation 

method (external heat applied) (Nelson and Sommers, 1982; Zeng et al., 2016). 

 

Evaluation experiment 

 

The evaluation in this study was focused on the comparison between SoLIM and SoLIM-IDW. In order 

to facilitate comparison to SoLIM (i.e., SoLIM-IDW with 𝑟 = 0), the SoLIM-IDW method proposed in this 

paper was evaluated in two different ways across several different r values (i.e., 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 

3). The first evaluation utilized quantitative statistics of the prediction errors based on independent 

evaluation samples, including the root mean squared error (RMSE), mean error (ME), and mean absolute 

error (MAE). The second was a qualitative comparison between the map resulting from the SoLIM-IDW 

method with the lowest RMSE and the map resulting from SoLIM. Note that currently there is no theoretical 

justification on the highest r value. With a very high r value, only those points being extremely close to the 

location of interest will influence the prediction. In this study we set the highest r value under test to be 3, 

which was proved to be large enough by the following experimental results. 

While Zhu et al. (2015)’s evaluation in the Heshan farm has shown that the SoLIM method performed 

better than multiple linear regression (MLR) under different sample scenarios, in this study the performance 

of MLR using the same modeling samples as those for SoLIM-IDW was also compared with that of SoLIM-

IDW based on independent evaluation samples. There are some methods widely used for digital soil 

mapping, which consider both attribute distance of environmental covariates and spatial distances, such as 

geographically weighted regression (GWR; Brunsdon et al., 1996; Fotheringham et al., 1996) and 

regression-kriging (RK; Odeh et al., 1995; Hengl et al., 2007).  Although the count of modeling samples in 

the study area is too limited to well fit the modeling of GWR and RK (Hengl et al., 2007), in this study GWR 

and RK were also compared with SoLIM-IDW based on the same modeling samples and the same 

independent evaluation samples. MLR, GWR, and RK were conducted by packages in R. Furthermore, a 

rudimentary prediction which assumed the mean soil property value of modeling samples (i.e., 5.299% for 

Heshan case, and 11.315 g kg-1 for Xuancheng case) to be the predicted value for each independent 

evaluation sample, or “MeanValuePredict” for short, was also compared with the tested methods. 

Note that in the Heshan case, the A-horizon SOM values of 39 modeling samples show an obvious right-

tailed distribution (i.e., min = 2.56%, max = 32.64%, mean = 5.30%, and standard deviation = 4.72%) due to 

a modeling sample with very high SOM value. This situation will impact the quality of the MLR modeled 

directly with original values of this dataset of modeling samples. To relieve such adverse impact, it is 

necessary for some kind of numerical transformations before use the SOM values for fitting the MLR, such 

as taking the square root (Wang et al., 2013), the logarithm (Bostan et al., 2012; Song et al., 2016), the 

reciprocal, or the Box-Cox transformation. By try-and-error, the reciprocal of SOM values of modeling 

samples in the Heshan obeys the normal distribution, by the Shapito-Wilk normality test (P = 0.41, larger 

than 0.05) which is suitable for this small sample test. Thus the reciprocal transformation of SOM values of 

modeling samples was used before building MLR, GWR, and RK with the stepwise variable selection in the 

Heshan case. For modeling GWR in this case, the weighting function was calibrated based on the Gaussian 

function, while the bandwidth was optimized to be 2195.4 m in this case based on the Akaike information 

criterion (AIC) (Burnham and Anderson, 2004). 

For building MLR in the Xuancheng case, the parent material was treated as eight dummy variables, 

each for one parent material type in this area, with a value of 1 or 0 (i.e., belonging to the corresponding 

parent material type, or not). In the Xuancheng case, the stepwise variable selection cannot effectively 

remove those highly-correlated environmental variables. Thus the principal component analysis (PCA) was 

adopted to relieve the collinearity issue among environmental variables, during building MLR, GWR, and 

RK in the Xuancheng case. Because the contribution rate to total variation from first principal component 

reached over 99%, the first principal component and dummy variables were used to build MLR. For 

modeling GWR in this case, the weighting function was still calibrated based on the Gaussian function, 

while the bandwidth was optimized to be 39171.1 m based on AIC. During RK modeling in the Xuancheng 
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case, the variogram function fitted with the 59 modeling samples was with a range of 10557.9 and a partial 

sill of 2.289 based on a spherical model and was still not stable. This situation is similar to that for RK in the 

Heshan case, although the sample number in the Xuancheng case is larger than the minimum number of 

modeling samples (i.e., 50) recommended by Hengl et al. (2007). 

Due to the fact that the modeling samples were collected from purposive sampling and with a limited 

number in both cases, we did not apply the maps from the MLR, GWR, and RK to qualitative comparison 

with the map from the SoLIM-IDW method. 

 
RESULTS AND DISCUSSION 
 

Heshan case 

 

Table I shows that in the Heshan case, the SoLIM-IDW method obtained lower error, in terms of RMSE, 

than the SoLIM method, GWR, and MeanValuePredict when 𝑟 = 0.25~1 . As r values increased, the 

performance of SoLIM-IDW first increased then decreased, with the lowest RMSE being produced by the 

SoLIM-IDW when 𝑟 = 0.75. The SoLIM-IDW with 𝑟 = 0.5 produced the second lowest RMSE, which is 

very close to that from the SoLIM-IDW with 𝑟 = 0.75. RMSE values from MLR and RK were very similar 

and were even larger than RMSE from MeanValuePredict in this case study.  

 

TABLE I  
Quantitative evaluation of the SoLIM-IDW method based on independent sample set. 

Method Heshan case: A-horizon SOM  Xuancheng case: A-horizon SOC  

RMSE ME MAE RMSE ME MAE 

 % % % g kg-1 g kg-1 g kg-1 

SoLIM (i.e., SoLIM-IDW with 

r=0) 
1.22 -0.74 1.00 3.82 -0.40 3.19 

SoLIM-IDW r = 0.25 1.15 -0.68 0.94 3.80 -0.45 3.16 

r = 0.5 1.11 -0.64 0.90 3.81 -0.50 3.14 

r = 0.75 1.10 -0.61 0.88 3.86 -0.55 3.15 

r = 1 1.17 -0.59 0.90 3.93 -0.58 3.19 

r = 1.5 1.66 -0.63 1.04 4.11 -0.59 3.26 

r = 2 2.44 -0.74 1.25 4.25 -0.56 3.32 

r = 2.5 3.13 -0.85 1.43 4.35 -0.51 3.41 

r = 3 3.60 -0.93 1.57 4.41 -0.45 3.47 

MLR  2.50 -0.45 1.31 4.02 -0.70 3.37 

GWR  1.24 0.11 0.83 4.02 -0.57 3.32 

RK  2.51 -0.45 1.31 3.99 -0.69 3.38 

MeanValuePredict  1.36 -0.95 1.16 4.31 -0.18 3.43 

 

Fig. 2 shows that the map of A-horizon SOM (%) estimated by the SoLIM-IDW with 𝑟 = 0.75 in the 

Heshan case has a spatial pattern which is similar to that estimated by SoLIM. The range of predicted values 

from SoLIM-IDW with 𝑟 = 0.75 in the Heshan case is [2.97%, 29.38%], which is much wider than that 

generated by SoLIM (i.e., [4.80%, 6.16%]) and much closer to that of the actual soil samples (i.e., [2.25%, 

32.64%]). The main differences between the spatial patterns shown in the maps resulting from the two 

methods is that there is a “bull’s eye” pattern in the map generated by SoLIM-IDW (i.e., obvious higher 

SOM prediction near the high-value modeling sample located in channel). This phenomenon occurs often 

and is a consequence of the characteristics of IDW. In this case, areas in the flat channel have high soil 

moisture and rich humus, and thus are reasonable areas for higher SOM prediction.  

 

Fig.2（见文末） 

Fig. 2  Map of the A-horizon SOM (%) in the Heshan case as estimated by a) SoLIM-IDW with r = 0.75, and b) SoLIM. 

(While the prediction value range from SoLIM in this case is 4.80% -- 6.16%, the legend used for the result map from 

SoLIM is revised to be same as that of SoLIM-IDW for consistency of comparison.) 

 

Xuancheng case 
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As shown in Table I, the SoLIM-IDW method with 𝑟 = 0.25~0.5  produced lower RMSE than SoLIM 

method in the Xuancheng case. The SoLIM-IDW method with 𝑟 = 0.25~1 as well as the SoLIM method 

performed better than RK, GWR, and MLR, while MeanValuePredict performed worst. SoLIM-IDW 

produced the lowest RMSE at 𝑟 = 0.25, which is very close to the second lowest RMSE produced by the 

SoLIM-IDW with 𝑟 = 0.5 . Its performance decreased, meaning that the RMSE increased, as r values 

increased from there. In both case studies, the SoLIM-IDW method produced lower RMSE than the SoLIM 

method for at least some of the r values tested, though the SoLIM-IDW method produced the lowest error 

under a different value of r in each case. Thus, the proposed SoLIM-IDW method can improve on the 

original SoLIM by taking into consideration the spatial distances between locations of interest and soil 

sample locations.  

Fig. 3 shows that the map of A-horizon SOC (g kg-1) estimated by the SoLIM-IDW method with 𝑟 =
0.25 in the Xuancheng case has a spatial pattern similar to that estimated by SoLIM, which is a phenomenon 

also seen in the Heshan case. There are crisp blocks in the maps of A-horizon SOC generated by both 

SoLIM-IDW and SoLIM. This is due to the effect of a nominal (categorical) environmental variable (i.e., 

parent material) in the inference. The range of values predicted by SoLIM-IDW with 𝑟 = 0.25  in the 

Xuancheng case is 5.81--21.91, which is wider than that predicted by SoLIM (i.e., [7.85, 20.68]) and closer 

to that of the actual soil samples (i.e., 2.54--27.23). Much as with the Heshan case study, there are “bull’s 

eyes” in the result map generated by SoLIM-IDW, which is due to the characteristics of IDW and the local 

effect of modeling samples. 

 

Fig.3（见文末） 

Fig. 3  Map of the A-horizon SOC (g kg-1) in the Xuancheng case as estimated by a) SoLIM-IDW with r = 0.25, and a) 

SoLIM. (While the prediction value range from SoLIM in this case is 7.85--20.68, the legend used for the result map 

from SoLIM is revised to be same as that of SoLIM-IDW for consistency of comparison.) 

 

Discussion 

 

Above results of two case studies showed that the SoLIM-IDW with 𝑟 = 0.5 consistently produced a 

RMSE being very close to the lowest RMSE in both case studies. Thus 𝑟 = 0.5 could be used with the 

proposed SoLIM-IDW for now, before further studies on determining the optimal 𝑟 values, or how to set the 

parameter 𝑟 properly under different application contexts (such as study area characteristics, and the spatial 

resolution of soil mapping) in an adaptive manner.  

Note that soils can change quickly in a very short distance due to the subtle change of environmental 

conditions, which cannot be captured by the environmental dataset at the resolution used with the digital soil 

mapping. For such change of soils, the proposed method and other existing digital soil mapping methods 

cannot work.  

 

CONCLUSIONS 

 

Current SoLIM inference utilizes an attribute domain of environmental covariates but ignores the spatial 

distances between the location of interest and the soil samples. In this paper, we propose a new method, 

SoLIM-IDW, which takes that spatial distance into consideration during the SoLIM-based predictive soil 

property mapping process. The evaluation experiments for each of two case areas show that the proposed 

SoLIM-IDW method performed better than the original SoLIM, MLR, GWR, and RK, while the error 

produced by SoLIM-IDW was minimized under different r values in each of the two cases. Currently the 

power parameter 𝑟 = 0.5 is suggested based on the results from two case studies, under which the SoLIM-

IDW consistently produced a RMSE being very close to the lowest. Future work mainly includes the 

determination of optimal power parameter (𝑟) values under different application contexts in an adaptive 

manner.  
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b) 

 

Fig. 1  Maps of study areas. a) the Heshan farm case; b) the Xuanchen county case. 

 

 

 
a)     b) 

 

Fig. 2  Map of the A-horizon SOM (%) in the Heshan case as estimated by a) SoLIM-IDW with r = 0.75, and b) SoLIM. 

(While the prediction value range from SoLIM in this case is 4.80% -- 6.16%, the legend used for the result map from 

SoLIM is revised to be same as that of SoLIM-IDW for consistency of comparison.) 

 

  



 10 

 a) 

 b) 

 

Fig. 3  Map of the A-horizon SOC (g kg-1) in the Xuancheng case as estimated by a) SoLIM-IDW with r = 0.25, and a) 

SoLIM. (While the prediction value range from SoLIM in this case is 7.85--20.68, the legend used for the result map 

from SoLIM is revised to be same as that of SoLIM-IDW for consistency of comparison.) 

 


